東京大学 理系
2023年度 東京大学理系第1問【定積分の不等式評価と区分求積法】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分の不等式評価と、区分求積法からのはさみうちの原理による極限の導出を考える問題です。 オープニングとしては中々けたたましいファンファーレに感じた受験生も多いでしょう。 \(B_{n}\) を具体的に計算できないこと、及び (1) の不等式評価を誘導と見れば (1) の不等式評価を用いてはさみうちの原理で仕留める というオチを睨むことは難しくありません。 ただ、肝心かなめの (1) の評価が簡単ではなく、第1問という位置取り的にも平常心を乱 ...
2023年度 東京大学理系第2問【隣り合わない並びと条件付き確率】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 隣り合わない並びという話題で、オチは条件付き確率というテーマ自体はよくある話題です。 隣り合わない並びを実現させるための手段としては 隙間に放り込む というのが有力な方法です。 (1) は先に白と黒を並べて、赤を隙間に放り込めばよいわけです。 確率ですから、玉は区別して考えればよいでしょう。 白と黒の並べ方が \(8!\) 通りあり、赤玉は隙間の9カ所から4カ所選んで並べればよいため、 \(8! \cdot 9 \cdot 8 \cdot 7 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 放物線と円の位置関係から始まり、円の接線が放物線によって切り取られる長さについて考える問題です。 (1) は距離に注目したり、円周上の点をパラメータ表示したり色々捌けるでしょうが、(2) のことを考えるとパラメータ表示をする方が方針面での接続はよさそうです。 (2) はひとまず \(L_{\mathrm{P}}\) を立式するところまでが一つの山場です。 点 \(\mathrm{P}\) における接線の式を立てる \(y=x^{2}\) と連 ...
2023年度 東京大学理系第4問【球と三角形が共有点をもつ条件】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間座標に関する問題で、ベクトル特有の機械的処理要素もありつつ、図形的な考察力も要する良問です。 (1) , (2) までは東大受験生であれば確保したいレベルで、(3) は差がつくでしょう。 一気に処理しようとせず、一つずつ丁寧に状況を整理していくと、全体像がつかめてきます。 全体像がつかめればこちらのもので、やるべきことや目の付け所が浮かんできやすくなります。 図形的な考察要素を好む東大らしい一問でしょう。 今年のセットの中では他の問題に ...
2023年度 東京大学理系第5問【整式が平方因子をもつ条件】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 整式の割り算と余りに関する論証問題です。 (1) は東大受験生であれば確保したい内容ですが、どちらかというと当たり前的な内容の証明なのでどこまで丁寧さを求めるか迷うところですが、出来る限り丁寧に記述しておきましょう。 (2) は除法の原理 \((割られる式)=(割る式)\cdot (商)+(余り)\) を用いて、与えられた条件を立式していきます。 \({h(x)}^{7}=f(x)Q_{1}(x)+h_{1}(x)\) \({h_{1}(x) ...
2023年度 東京大学理系第6問【条件を満たす線分と折れ線の先端の存在領域の体積】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 見るからに威圧感のある空間図形の問題です。 問題を噛み砕くのに時間がかかり、突破口を見出すのに時間がかかり、それを計算処理するのに時間がかかり、適切な文章や図でまとめるのに時間がかかり、というようにとにかく時間がかかります。 面白い問題だとは思いますが、試験場では相手にしてはいけない問題です。 結局は (1) では棒、(2) ではヌンチャク(折れ線) が立方体の表面と共有点をもたないように動くときの先端の存在領域を考えることになります。 また ...
2023年度東大理系 各解説記事 150分 6題 記述式 と、形式に変更はありません。 分野的トピックス 東大が好む整数分野からの出題がありませんでした。 また、全体的に第3問、第4問、第6問など図形に関する出題が目立ちました。 各大問について 第1問(標準) 問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分の不等式評価をし、それを用いてはさみうちの原理で極限を求める問題です。 流れ自体は定番の流れなので、ざっくりとしたシナリオ自体は読み取れますし、(1) の結果を認めてしまえば ( ...
京都大学 理系
2023年度 京都大学理系第1問【定積分の計算・高次式の余り】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 京大が定期的に取り入れる小問集合形式の問いです。 いずれも完答は現実的な範疇ですので、ここをキッチリと取って勢いにのっていきたいところです。 問1は基本的な定積分の計算問題で、部分積分一発で沈みます。 問2は年度に絡めた高次式 \(x^{2023}-1\) を \(x^{4}+x^{3}+x^{2}+x+1\) で割ったときの、余りについて考える問題です。 \(x^{4}+x^{3}+x^{2}+x+1\) という形を見て \(x^{5}-1 ...
2023年度 京都大学理系第2問【空間における2直線が交点をもつ条件】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間ベクトルについての基本問題です。 内分点、中点の位置ベクトルの導出 共線条件 2直線が交点をもつ条件 など、空間ベクトルに関する基本事項のセットとなっています。 なお、あまり律儀にお絵描きする必要はなく、立式の補助としてある程度の図で構わないでしょう。 問題によってはある程度正確に図を書き、図形的な考察を通さないと負担が重くなるような問題もありますが、本問はある程度ラフな図でも立式さえできれば、式的な処理で押し通せる範疇です。 そういった ...
2023年度 京都大学理系第3問【サイコロの目の積についての確率】
問題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロを投げて出た目の総積について考える問題で、話題としては典型テーマです。 悪くいってしまえば正直どの大学で出題されてもおかしくなく、個性はないと言ってよいでしょう。 下手をすると進学校であれば定期考査レベルの問題ですので、正直言って確保しないと大ダメージです。 (この問題で配点30点ですからね。) 特に (1) は京大を本気で目指してきた受験生からするとバカにするなという感想が出てきてもおかしくないでしょう。 解答はコチラ なお、京大は ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 関数の最大値、最小値を求めるという極めてド直球なテーマです。 今回の \(f(x)\) は \(g(x)=x+\displaystyle \frac{1}{x}\) \(h(x)={e}^{-x^{2}}+\displaystyle \frac{1}{4}x^{2}+1\) と設定した際に \(f(x)=g(h(x))\) という形になっているいわゆる合成関数です。 \(y={e}^{-x^{2}}+\displaystyle \frac{1 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 線分の通過領域による立体の体積を求める問題です。 点 \(\mathrm{P}\) は1次元的な動きですが、点 \(\mathrm{Q}\) は2次元的な動きをします。 同時に動かすと中々想像がつきませんが、ひとまず 点 \(\mathrm{P}\) を固定して \(\mathrm{Q}\) だけ動かす といったように、一つずつ動かすと分かりやすいでしょう。 独立2変数の扱いに通じる部分がありますね。 この態度で考えを進めると、結局は \(\ ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\mathrm{cos}\) の \(n\) 倍角の式を用いた論証問題です。 チェビシェフの多項式と呼ばれるネタがありますが、それにまつわる類題経験がないと厳しいでしょう。 チェビシェフの多項式に関するシリーズはコチラ 本問はチェビシェフの多項式がもつ特徴的な性質を自分で抽出して利用することが求められます。 性質そのものはもちろん、その性質の導出過程においても経験がモノを言いますので、知識的な側面が強い問題だと思います。 解答はコチラ
2023年度京大理系 各解説記事 150分 6題 記述式 と、形式に変更はありません。 分野的トピックス 昨年は数Ⅲからの出題は1題のみでしたが、今年は3大問で数Ⅲからの出題がありました。 また、京大頻出の整数分野については、第6問の中にその要素はあったものの前面に押し出した整数問題というわけではありませんでした。 各大問について 第1問 問題はこちら(画像をクリックするとPDFファイルで開きます。) 京大が定期的に採用する各問が独立した小問形式の大問です。 2021年はこの独立小問形式の大問が2題あり、 ...
東北大学 理系
2023年度 東北大学理系第1問【玉を交互に取り出すゲーム】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\mathrm{A}\) , \(\mathrm{B}\) の2人が玉を交互に取り出していき、 \(\mathrm{A}\) が赤玉を取り出したら \(\mathrm{A}\) の勝ち \(\mathrm{B}\) が白玉を取り出したら \(\mathrm{B}\) の勝ち というゲームに関する確率です。 (1) , (2) いずれにしても、題意を満たすような玉の取り出し方は限定的なので、どのような事象が起こればよいのかを追っていき ...
2023年度 東北大学理系第2問【三角関数の方程式の解の個数と極限】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 三角関数に関する方程式の解と、その解の個数に関する極限について考える問題です。 今回の \(\sin{3x}+\sin{x}=0\) という方程式の解を求めること自体は基本的なレベルであり、(1) は確保しないとツライものがあります。 実質は (2) の勝負です。 \(m\) 以下の解の個数を把握しようと思うと \(m\) がどの程度の大きさなのか ということに興味がいくでしょう。 今回の方程式の正の解は \(x=\displaystyle ...
2023年度 東北大学理系第3問【2項間漸化式(変数倍)の一般項とその和】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 2項間漸化式に関する一般項とその和についてを扱った問題です。 (1) で一般項が出せないと、連動して (2) も失うことになります。 しかも、(1) が出せれば (2) も勢いに乗って完答しやすいレベルであるため、差が付きやすい問題だと言えましょう。 漸化式が \((n+2)a_{n+1}=na_{n}+2\) という形で与えられているのはまだ親切で、 \(a_{n+1}=\displaystyle \frac{n}{n+2}a_{n}+\d ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(1\) の \(5\) 乗根に関する論証問題です。 \(1\) の \(5\) 乗根に関する整式の問題は今年の京大でも出題がありました。 (1) で \(\alpha\) が \({\alpha}^{4}+{\alpha}^{3}+{\alpha}^{2}+{\alpha}+1=0\) を満たしていることが分かりますから、\({\alpha}\) が \(1\) の \(5\) 乗根であることを見抜くのは、東北大受験生であれば無理はありま ...
2023年度 東北大学理系第5問【四面体の頂点から対面に下ろした垂線の足の位置ベクトル】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 四面体の頂点から対面に下ろした垂線の足の位置ベクトルにスポットを当てた問題です。 基本に忠実に、登場人物を \(\vec{a}\) , \(\vec{b}\) , \(\vec{c}\) で表し、大きさと内積という基本情報を駆使しながら計算を進めていくことになります。 非常に基本的なレベルの問題であり、基本的には一本道であるため怖いのは計算ミスぐらいのものです。 なお、今回の四面体は作為的に設定されているため、その特殊性に気がつくと、多少 ...
2023年度 東北大学理系第6問【長さと傾きが一定の線分の通過領域】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 線分の通過領域と、その面積を求める問題です。 線分の通過領域と聞いて身構えますが、今回の線分は 長さと傾きが一定の線分 であり、目で追っていくことができます。 その際 (1) がその補助となる部分です。 方針面では困ることはないでしょう。 ただ、細々とした算数計算や、面積を求めるのに必要な部分をチョコチョコ計算していると時間がかかります。 面積計算も、まともにぶつかると少々骨が折れますので、図形的考察をはさみながら少しでも労力を減らす工夫を試 ...
2023年度東北大学理系 各解説記事 150分 6題 記述式 と、形式に変更はありません。 分野的トピックス 第1問:場合の数・確率 第2問:三角関数・極限(数Ⅲ) 第3問:数列 第4問:複素数(複素数平面)(数Ⅲ) 第5問:ベクトル 第6問:微分法・積分法(数Ⅲ) という出題で、6題中3題が数Ⅲからの出題でした。 基本的に各分野からバランスよく出題されていました。 各大問について 第1問(やや易) 問題はこちら(画像をクリックするとPDFファイルで開きます。) 赤玉と白玉が吐いた袋から \(\mathr ...
九州大学 理系
2023年度 九州大学理系第1問【相反方程式と複素数平面における三角形の形状決定】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 相反方程式と、複素数平面における三角形の形状決定問題です。 相反方程式とは、 係数が外側から左右対称になっている方程式 のことで、特有の捌き方をするテーマ性のある話題です。 知識的側面が強いですが、難関大を目指すにあたっては準備していて然るべき定番の話題とも言えます。 相反方程式については を参考にしてください。 (2) の複素数平面における三角形の形状決定問題については、\(\alpha\) , \(\beta\) , \(\gamma ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 漸化式は2項間漸化式なのですが、絶対値が付いているという点で面食らう受験生も多かったと思います。 こういった得体のしれない漸化式については、 実験して情報や要領をつかみ取る という態度で愚直に調べていくしかありません。 何かうまい方法はあるか と式変形に固執してしまうと身動きがとれなくなります。 試験場補正もかかりやすく、論述も手慣れていないとうまく記述しづらいため、完答しづらい問題です。 問題自体は面白く、思考力を鍛える教材としては積極的に ...
2023年度 九州大学理系第3問【任意の格子点が斜交座標においても格子点となる条件】
問題はこちら(画像をクリックするとPDFファイルで開きます。) ベクトルに関する論証問題ですが、1次変換に伴う斜交座標への変換という話題を扱っており、現行課程に行列がないため受験生はイメージが掴みにくいでしょう。 成分を用いて噛み砕いていくことで、数式的に処理していけますので、特別な知識は必要ありません。 ただ、問題の条件を適切に咀嚼する顎の力が必要です。 また、最後の (3) は全称命題としての独特の捌き方をします。 「任意の(全ての)」や「存在する」といった言葉をきちんと汲み取る力も求められ、文字も多 ...
2023年度 九州大学理系第4問【関数方程式と微分についての論証】
問題はこちら(画像をクリックするとPDFファイルで開きます。) リード文を読み、下線部に関連する事柄を証明したり、補足させたりするといった形式であり、従来の「問題解決型」の問いというより、「基本深掘り型」の問いです。 昨年 (2022年) にこの形式が出題されて、2年連続でこの形式の問題が出題されました。 今年は関数方程式と、微分に関する論証問題です。 昨年の講評で 今後こういった問題が入ってきて、それが九州大の数学の目玉になるのかどうかというのは、来年以降注目したいところでしょう。 と述べましたが、2年 ...
2023年度 九州大学理系第5問【パラメータ表示で与えられた曲線についての面積】
問題はこちら(画像をクリックするとPDFファイルで開きます。) パラメータ表示で与えられた曲線についての面積を考える問題です。 やること自体は一本道であるため、方針面ではそこまで迷うことはないのですが、途中で出てくる数値がお世辞にもキレイではないため、不愉快な計算に襲われます。 細かな部分まで詰めようとすると結構神経を使うため、気疲れします。 グラフの概形的に面積をどう捌くかが問題で、面積の立式さえできれば積分計算自体は標準的なものですが、筋の悪い方向にいってしまい収拾がつかなくなってしまう受験生もそれな ...
2023年度九州大学理系 各解説記事 150分 5題 記述式 と、形式に変更はありません。 分野的トピックス 第1問:複素数と方程式 複素数平面(Ⅲ) 第2問:数列 第3問:ベクトル 第4問:微分法(Ⅲ) 第5問:微分法・積分法(Ⅲ) 第4問は文章を読んで、その内容の補足や証明について考えるという形式の問題で、この形式での出題は2年連続となりました。 各大問について 第1問(やや難) 問題はこちら(画像をクリックするとPDFファイルで開きます。) 相反方程式と、複素数平面における三角形の形状 ...
北海道大学 理系
問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数平面上で帰納的に定まる図形の列について考える問題です。 試しに \(C_{1}\)から \(C_{2}\) を作ってみると、構造や要領がつかみやすいと思いますし、 それができるなら \(C_{n}\)から \(C_{n+1}\) を作るのもできるはずです。 変換の意味を考えてみると、 \(\displaystyle \frac{1}{2}\) 倍縮小&平行移動 で、半径がどんどん半分になっていく円であることは想像できる人にはできるのでし ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間座標における球面、平面、直線に関する問題です。 手始めに球の中心と平面 \(\mathrm{ABC}\) との距離を求め、次に球の中心の座標を求め、オチは球と直線の2交点の距離を求めるという流れです。 計算量、難易度はともに標準的で、今年 (2023年) のセットの中では唯一無理のない範囲で完答が狙える問題です。 律儀に \(x\) 軸、\(y\) 軸、\(z\) 軸を書いてやろうとすると見にくく使い物にならない絵を貴重な時間を割いて書く ...
2023年度 北海道大学理系第3問【2変数についての方程式】
問題はこちら(画像をクリックするとPDFファイルで開きます。) グラフを用いて方程式の解について考察する問題です。 (1) は非常に基本的かつ定番の問題であり、(2) 以降の足掛かりとなる問題であるためこれを落とすことは許されないでしょう。 実質的には (2) 以降が勝負です。 (1) の関数 \(f(x)\) を用いると、(2) で与えられている等式は \(f(x)f(y)=c\) という形で表されています。 ここから何をしてよいのか戸惑ってしまう受験生もいたかもしれません。 (1) の結果を活用しよう ...
2023年度 北海道大学理系第4問【さいころの目で定まる値に関する確率】
問題はこちら(画像をクリックするとPDFファイルで開きます。) さいころの目によって定まる値のとり得る値に関する考察問題で、見かけで怯んでしまう受験生も多そうです。 文系との一部共通問題で、文系では \(K_{2}=5\) となる確率を求めよ。 というさらなる実験的設問がありましたが、理系ではカットされています。 (1) の \(K_{3}=5\) という場合でもよく見えなかった場合、自分で \(K_{2}=5\) という場合も考えてみるのも一つの手で、とにかく実際に手を動かす中で要領を掴むことが大切です ...
2023年度 北海道大学理系第5問【円の接線に関する対称点】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 円の対称点について色々味付けがしてある問題です。 (1) , (2) までは何とか確保したいレベルです。 (3) も \(\mathrm{A}\) , \(\mathrm{P}\) , \(\mathrm{D}\) が同一直線上にあるという共線条件の翻訳さえできれば、(1) で考えた方程式が現れますので、前半の存在性についての証明は終わっているに等しい問題です。 難しいのは後半の一意性の証明です。 気がつけばそこそこの計算量で収まる路線 ...
2023年度北海道大学理系 各解説記事 120分 5題 記述式 と、形式に変更はありません。 分野的トピックス 第1問:複素数平面 極限(数Ⅲ) 第2問:空間ベクトル 第3問:微分法(数Ⅲ) 第4問:場合の数・確率 第5問:図形と方程式 微分法(数Ⅲ) 若干微分法(数Ⅲ)に偏った出題でした。昨年(2022年)は積分の話題はありましたが、具体的な積分計算がありませんでした。 今年は積分法の出題そのものがありませんでした。 各大問について 第1問(標準~やや難) 問題はこちら(画像をクリックするとPDFファイ ...
大阪大学 理系
2023年度 大阪大学理系第1問【メルカトル級数に関する極限】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た目で怯んでしまう人が多そうです。 重い数Ⅲをよく出題する阪大ですが、本問は計算量そのものはそこまで大変ではありません。 メルカトル級数 \(\displaystyle \sum_{k=1}^{\infty} \displaystyle \frac{(-1)^{k-1}}{k}=\log{2}\) という有名な級数に関する類題経験があると、(1) の活用法が見えやすくなります。 この分野は特に現役生が苦手意識をもったまま試験当日を迎えやすい ...
2023年度 大阪大学理系第2問【平面ベクトルと点の存在範囲】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 目がチカチカして一見怯んでしまいそうですが、一皮むいてしまえば標準的な内容です。 試験場で解けなかった人からすると、あとから解答を見て なんでこれができなかったんだ と唇を噛むタイプの問題です。 指導者レベルの経験値をもった人であれば当たり前に感じてしまう工夫なのですが、受験生レベルだと(ましてや試験場だと)アタフタするかもしれません。 本問は文系第3問との共通問題でした。 文系の受験生だと一皮が分厚く感じるでしょうが、阪大理系受験生であれば ...
2023年度 大阪大学理系第3問【曲線外の点から引いた接線の本数】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 曲線外の点から接線が何本引けますかという定番のテーマであり、類題経験は阪大受験生であればあって然るべきでしょう。 なので、方針面で困ることがあってはなりません。 ただ、処理面で手が止まってしまう受験生は少なくないでしょう。 \((t \ , \ \cos{t})\) における接線の式を立て , それが \((a \ , \ b)\) を通るように仕組むことになります。 すると、 \(b=(t-a)\sin{t}+\cos{t}\) という等 ...
2023年度 大阪大学理系第4問【座標空間における点の軌跡】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(xz\) 平面上の点 \(\mathrm{A}\) と、\(xy\) 平面上の点 \(\mathrm{P}\) を結ぶ直線を原点を通るように垂直に切った平面 \(\alpha\) と、その切り口である点 \(\mathrm{Q}\) を考えます。 お絵描きが中々難しいですが、完ぺきに律儀な図を書かなくても、必要な情報さえ抽出できればよいでしょう。 (1) は式的に攻めるか、図から攻めるかという2路線が考えられますが、ある程度ラフな絵でも情 ...
2023年度 大阪大学理系第5問【サイコロの目によってできる数が7で割り切れる確率】
問題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロの目によってできる数 \(b_{n}\) が \(7\) で割り切れる確率を求める問題です。 実験的な設問もあり、今年のセットの中では比較的標準の難易度の問題であるため、できれば確保したいところです。 \(b_{n+1}=a_{1}b_{n}+a_{n+1}\) という関係式から、\(a_{1}b_{n}\) を \(7\) で割った余りに応じて、\(n+1\) 回目の目である \(a_{n+1}\) の目が 1 つ決まるということに ...
2023年度大阪大学理系 各解説記事 150分 5題 記述式 と、形式に変更はありません。 分野的トピックス 第1問:極限・積分法(Ⅲ) 第2問:平面ベクトル 第3問:微分法(Ⅲ) 第4問:空間ベクトル 第5問:確率・数列 数Ⅲの比重が大きい阪大ですが、今年は2題でした。 また、ベクトルの問題が2題あったのも特徴的でした。 各大問について 第1問(標準) 問題はこちら(画像をクリックするとPDFファイルで開きます。) メルカトル級数に関連する極限の問題です。 不等式証明からの極限計算ということで、最後は「 ...
名古屋大学 理系
2023年度 名古屋大学 理系 第1問【複素数平面上の円上の点を解にもつ4次方程式】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数平面上での円上の点が表す複素数を解にもつ4次方程式についての問題です。 図形的な意味合いと式的な意味合いを結びつける力も要求され、総合的な力が問われています。 (1) はなまじ形がキレイな結論であるため、逆にアタフタするかもしれませんが、冷静に沈めたいところです。 (2) は \(p\) , \(q\) , \(r\) , \(s\) を解 \(\alpha\) , \(\beta\) の情報を含む \(t\) , \(u\ ...
2023年度 名古屋大学 理系 第2問【2円で囲まれる部分のx軸回転体】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 2円が相異なる2点で交わるとき、2円で囲まれる部分の \(x\) 軸回転体の体積について考える問題です。 文字を多く含み、計算量が多少あるものの少なくとも (2) , できれば (3) までは何とか辿り着きたいところです。 (4) は (3) で得た \(V(r)\) を \(r\) で微分し、\(V'(r)\) を計算して増減表を得ることができれば解決なので、方針面では迷う余地はありませんが、かなりエグイ計算に襲われます。 \(r=a-b ...
2023年度 名古屋大学 理系 第3問【方程式の実数解の個数】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 方程式の実数解の個数について考えるという問題で、テーマとしては定番寄りの話題です。 微分法を用いてグラフの概形を捉え、方程式の解を視覚化することで共有点の個数を考えるという点で、方針面では迷う余地はありません。 ただ、与えられた方程式をどのような形で見るのが最善なのかという点で、アタフタする部分があるかもしれません。 与えられた方程式をどのように見ても、一応解けるには解けますが、最適な道を行こうと思うと、問題全体を俯瞰する必要が出てきます。 ...
2023年度 名古屋大学 理系 第4問【第1種スターリング数】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 第1種スターリング数を扱った問題ですが、多くの受験生にとって初見だと思います。 一般に、数列 \(\{a_{n}\}\) に対して \(\displaystyle \sum_{n=0}^{\infty}a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots\) を数列 \(\{a_{n}\}\) の母関数と言います。 例えば、 \({}_n \mathrm{ C }_0+{}_n \mathrm{ C }_1 x+ ...
2023年度名古屋大学理系 各解説記事 150分 4題 記述式 と形式に変更はありません。 分野的トピックス 第1問:複素数と方程式、複素数平面(Ⅲ) 第2問:図形と方程式、微分法・積分法、極限(Ⅲ) 第3問:微分法(Ⅲ) 第4問:式と証明、数列 3題が数Ⅲの内容を含む出題となりました。 また、頻出分野である場合の数・確率からの出題がなく、これは2002年以来のことです。 各大問について 第1問(標準) 問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数平面上の円周上の点が表す複素数を ...