月別アーカイブ:2022年09月

2022/9/29

フィボナッチ数列とリュカ数列 第5講【カッシーニ・シムソンの定理】【1985年度 広島大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入ってい ...

2022/9/26

フィボナッチ数列とリュカ数列 第4講【フィボナッチ数列の平方和】【2007年度 福島大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入ってい ...

2022/9/20

フィボナッチ数列とリュカ数列 第3講【相互関係】【2007年度 埼玉大学】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 関連問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っ ...

2022/9/20

フィボナッチ数列とリュカ数列 第2講【リュカ数列の一般項】【隣接2項の最大公約数と極限】【1994年度 姫路工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っていたという状態となれば幸いです。 シリーズ一覧 第2講は リュカ数 ...

2022/9/15

フィボナッチ数列とリュカ数列 第1講【ビネの公式と黄金比】【フィボナッチ数列の和】【1994年度 関西医科大学ほか】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っていたという状態となれば幸いです。 シリーズ一覧 第1講はフィボナッ ...

2022/9/7

微分積分に関する正誤判定【1988年度 大阪教育大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 微分積分に関する正誤判定の問題です。 「それらしい」主張に惑わされないこと。 勝手なMy Rule をふりかざさないこと。 ということに対する教訓にしてほしい問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(f'(x)=g'(x)\) とは \(\{f(x)-g(x)\}'=0\) ということです。 これより \(C\) を定数として \(f(x)-g(x)=C\) ということが言えると思います。 ...

2022/9/2

抽象的な事象の確率と漸化式【1985年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 玉を取る、カードを取る、サイコロを投げる、といったいかにも確率の題材となる具体的試行ではなく、ある変数が整数 \(n\) という値をとる確率が \(p_{n}\) という抽象的な設定の問題です。 基本的な処理力だけでなく、その場力も加えた総合的な力が必要な良問です。 試験場ではキッチリと差がつく問題で、確保できればアドバンテージになる難易度だと言えましょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 条件の立式 ...

© 2022 MathClinic