場合の数・確率系

2022/9/2

抽象的な事象の確率と漸化式【1985年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 玉を取る、カードを取る、サイコロを投げる、といったいかにも確率の題材となる具体的試行ではなく、ある変数が整数 \(n\) という値をとる確率が \(p_{n}\) という抽象的な設定の問題です。 基本的な処理力だけでなく、その場力も加えた総合的な力が必要な良問です。 試験場ではキッチリと差がつく問題で、確保できればアドバンテージになる難易度だと言えましょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 条件の立式 ...

2022/6/22

確率と区分求積法【2019年度 兵庫県立大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 確率の問題をベースに、極限計算の運用を見る問題です。 ひとまずは確率そのものを計算できるかどうかという部分が問われます。 ひとたび確率が計算出来たら、今度は数学Ⅲの極限の話題です。 一問で様々な基本を試す標準的な問題で、難関大受験生にとってはこういうレベルの問題をキッチリと確保したいところです。 (以下ネタバレ注 ...

2022/1/11

組分け問題【区別のあるなし問題】【1999年度 立教大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 類題3【腕試し用類題】はこちら(画像をクリックするとPDFファイルで開きます。) 場合の数や確率の分野に対する苦手意識をもつ人を量産するタイプの問題です。 何を区別して何を区別しないか について例題から徐々にステップアップしていき、最終的には東大後期の問題を倒してみたいと思います。 (以下ネタバレ注意) &nbs ...

2022/1/6

球の追加による確率【1970年度 九州大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 壺から壺へ球を移動させていき、最後の壺から白球が取り出される確率を考えます。 人によっては直感で分かってしまう人もいるかもしれません。 難易度的にはキッチリ差が付くちょうどよい難易度でしょう。 どちらかというと、問題の構造を分析してその場で対応する力を要する問題です。 問題文を見て睨めっこしてしまうタイプの人を弾くフィルターが付いています。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む いきなりが難しければ実験 い ...

2021/12/22

サイコロの目の約数と論証【2014年度 奈良女子大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロを投げて出た目の数の約数の番号の付いたカードを裏返していくという問題です。 実は、この設定で昔作問したことがありました。 当時は自分の中で新作問題のつもりで模試用に作問したのですが、後に奈良女子大で出題されていた本問を発見し、 そりゃこのぐらいシンプルな設定であれば被るわな と思ったのを思い出します。 その問題は最後に類題としておいておきますので、よかったらどうぞ。 なお、以下の解説では赤面の状態をR、白面の状態をWと表し、左から番号 ...

2021/12/16

確率の最大【隣接2項比較】【2003年度 京都産業大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 確率の最大を求めるという問題を扱います。 恐らく単元学習の段階では解法のクセの強さと、考え方に慣れていないため、難問という位置づけだったと思います。 ただ、演習段階においては定番の類の問題と言ってよく、学習の定着度があらわれるテーマです。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について 3回目の1で操作終了ということを噛み砕いてイメージすれば というように 直前の \(n-1\) 回目までにリーチが ...

2021/12/13

余事象を正しく捉える【1997年度 名古屋市立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) いわゆるランダムウォーク(酔歩)と呼ばれる類の問題です。 様々なバリエーションがありますが、本問は正三角形上の辺を通って下段に降りていくという設定です。 この分野の問題らしく、その問題特有の設定や急所を見抜きながら対応していく「その場力」が必要な問題です。 計算量自体はそこまで多くはなく、洞察力寄りの力が求められます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について 2回の移動で \(\mathrm ...

2021/12/8

自然数の和分割【2002年度 大阪教育大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 自然数を和として分割する方法について考える問題です。 シンプルでキレイな題意は、アレンジしようにもそれ以上手を加える余地があまりなく、それ以降出題を考えても二番煎じになってしまうためかえって出題を敬遠されるかもしれません。 ただ、シンプルで分かりやすく、難易度が適度におさまり、かつ手垢の付いていない良問というのはそう簡単には生み出せるものではありません。 本問は上述の良問要素を含んでいると思います。 (もちろん見る人が見たら手垢はついていると ...

2021/12/1

確率と極限【1987年度 2003年度 東京大学】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 確率と極限の融合問題ですが、実質的にはまずは確率をきちんと計算できるかが要求されます。 正六角形の頂点に印をうっていき、直角三角形ができるできないを考えるという、よくありそうな設定です。 ただ、意外と「ウッ」となる受験生は少なくないでしょう。 よくある設定のなかで、考えづらい要素を含むボディーブローのような問題です。 東大って結構そういう出題が特徴的だったりしますね。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む ...

2021/11/9

円周上の点で作る三角形【シグマで数える】【2001年度 大阪大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 円周上の正 \(4n\) 角形の頂点を用いて三角形を作るという、素材としてはよくある問題です。 ただ、素材は定番でも中身はマニュアル的態度で倒す態度の問題ではありません。 「結局こうなっていればいい」 ということを見抜く観察力や洞察力を要する問題です。 最後の最後まで気が抜けない要素も含んでおり、試験場では全体のセット次第で撤退するかどうかの判断に迫られる類の問題でしょう。 難易度的には絶妙な難易度です。 (以下ネタバレ注意)   ...

© 2022 MathClinic