数列

2022/9/26

フィボナッチ数列とリュカ数列 第4講【フィボナッチ数列の平方和】【2007年度 福島大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入ってい ...

2022/9/20

フィボナッチ数列とリュカ数列 第3講【相互関係】【2007年度 埼玉大学】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 関連問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っ ...

2022/9/20

フィボナッチ数列とリュカ数列 第2講【リュカ数列の一般項】【隣接2項の最大公約数と極限】【1994年度 姫路工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っていたという状態となれば幸いです。 シリーズ一覧 第2講は リュカ数 ...

2022/9/15

フィボナッチ数列とリュカ数列 第1講【ビネの公式と黄金比】【フィボナッチ数列の和】【1994年度 関西医科大学ほか】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っていたという状態となれば幸いです。 シリーズ一覧 第1講はフィボナッ ...

2022/7/3

和から一般項【1977年度 徳島大学ほか】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 和の情報から一般項の情報に辿り着く 「和から一般項」 という話題です。 本問は1960年に当時高校生であった鹿野健氏が新作し、雑誌のコンテストで入賞したことで、後に様々な大学で出題されるようになったとのことです。 見た目の簡潔さ、教育的な内容、適度な難易度、といったバランスがよく、演習題材としてはとてもよい題材です。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について 和から一般項 \(S_{n}=a_ ...

2022/6/25

sin∞タイプの極限【1995年度 埼玉大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\sin{\infty}\) という一見収束しないように見える形の極限値を求める問題です。 結果的にこの極限が収束するというのは、感覚的に不思議な感じがします。 本問は適切な誘導があるために、完答するのもそこまで無理な話ではありません。 しかし、ノーヒントだと多くの人がアタフタして終わりということになりかねないでしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について ひとまず、目がチカチカする ...

2022/6/10

等差中項に関する論証【2005年度 三重大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 等差中項に関する論証問題です。 本問はヒントなんだけど、ヒントになりすぎない絶妙な誘導が付いており、入試問題としてはよく練られた設計です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 一般に \(a\) ,  \(b\) ,  \(c\)  がこの順に等差数列である \(2b=a+c\) ということは同値 ということが言えます。 このとき、\(b\) を \(a\) ,  \(c\) の等差中項と言います。 ...

2022/5/30

ペル方程式 第4講【ペル方程式の解と近似】【1984年度 一橋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) ペル方程式の第4講は 「ペル方程式の解と近似」 という話題を扱います。 この話題を扱ううえでうってつけの例題です。 ペル方程式の解を用いて、\(\sqrt{2}\) の近似の精度をよくできるということを証明するというオチです。 初見であっても適切な誘導があり、割と親切な設計となっているため完答を狙いたいところです。 このシリーズの一覧はこちら (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について このシリーズで散々扱っ ...

2022/1/27

仮想難関大(オリジナル予想問題)【整数~累乗数の商と余り~】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回は整数と数列に関する問題です。 累乗数の商について考察します。 決して簡単ではありませんが、特別なこともしません。 少しばかり経験による知識的側面は必要としますが、難関大受験生にしてみれば常識にしておくべき知識です。 ...

2021/12/21

等差数列の和の最大【2004年度 群馬大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 数列分野の中で一番最初に学習する基本的な数列である等差数列。 その等差数列と和について扱った問題です。 大抵この分野の問題は難易度的には基本レベルの問題になりがちですが、本問は定番の話題である等差数列の和の最大問題をベースとした運用力の上に 洞察力 構想力 処理力 などが求められる難問です。 各種スタミナが必要であり、機械的な態度だけでは完答するには厳しいでしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 等 ...

© 2022 MathClinic