問題はこちら(画像をクリックするとPDFファイルで開きます。)
定積分と不等式評価の第5講です。
このシリーズの一覧はこちら
定積分と不等式評価 第1講【定積分の評価方法】【2001年度 大分医科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 多くの人が苦手とする話題である「定積分と不等式評価」という話題です。 特に現役生の勝負のカギは数Ⅲの完成度にあると言っても過言ではないのですが、結局この分野を苦手としたまま当日をむかえてしまうことになる受験生は沢山いるでしょう。 そんな受験生たちに差をつけましょう。 このシリーズの一覧はこちら 不等式評価には絶対的な正解がありません。 例えば \(1 \lt □\) の □ に何を入れるかと言われたら人によるところ ...
定積分と不等式評価 第2講【ライプニッツ級数】【2012年度 琉球大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回は \(\tan{ \ }\) に関する定積分を扱います。 積分漸化式の作成については「部分積分」というのが常套手段なのですが、\(\tan{ \ }\) に関する定積分については例外です。 今回の問われ方は「\(I_{n}+I_{n+2}\) を求めよ。」であり、これはかなり親切です。 「\(I_{n+2}\) を \(I_{n}\) と \(n\) を用いて表せ。」であれば正答率はもっと下がると思います。 その場合の対処 ...
定積分と不等式評価 第3講【ライプニッツ級数】【項別積分】【2006年度 名古屋市立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 前問に引き続き、ライプニッツ級数を題材とした定積分と不等式評価についての問題を見てみます。 このシリーズの一覧はこちら 今回は \(\tan{ \ }\) の逆関数を用いた誘導が付いた問題です。 (1) はイロハのイですが、今回は【総括】の中で \(x=\tan{\theta}\) の置き換えで上手くいくバックボーンについて触れておきました。 (2) においては「体の一部を定数化」です。 その際には、 ...
定積分と不等式評価 第4講【メルカトル級数】【2015年度 山形大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分と不等式評価の第4講です。 今回は メルカトル級数 \(1-\displaystyle\frac{1}{2}+\displaystyle\frac{1}{3}-\displaystyle\frac{1}{4}+\cdots\cdots=\log{2}\) について扱った問題を見てみます。 とは言え、本問は、よく言えば丁寧な、悪く言えば過保護な誘導がついています。 ほとんど言われた通り進めていけば、完答できてしまうレベルだと ...
定積分と不等式評価 第5講【eの無限級数表示】【2004年度 高知大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分と不等式評価の第5講です。 このシリーズの一覧はこちら 今回はネイピア数 \(e\) の無限級数表示がオチの問題です。 背景には \(e^{x}\) のテイラー展開(マクローリン展開) \(e^{x}=1+\displaystyle\frac{x}{1!}+\displaystyle\frac{x^{2}}{2!}+\displaystyle\frac{x^{3}}{3!}+\cdots\) があります。 しかし、それを前 ...
今回はネイピア数 \(e\) の無限級数表示がオチの問題です。
背景には \(e^{x}\) のテイラー展開(マクローリン展開)
\(e^{x}=1+\displaystyle\frac{x}{1!}+\displaystyle\frac{x^{2}}{2!}+\displaystyle\frac{x^{3}}{3!}+\cdots\)
があります。
しかし、それを前面に押し出す解答は許されませんし、大学側も期待していません。
しっかりと高校で学習した内容の中で考えられるように丁寧に誘導をつけて出題してくれています。
ここまでこのシリーズを学習した方は
と叩き潰してください。
(以下ネタバレ注意)
+ クリック(タップ)して続きを読む (1) は「体の一部を定数化」です。 示すべき不等式の中に \(n\) が残っていないことから、定数化するのは \(n\) を含んだ \(t^{n}\) の方です。 (2) は (1) で作った不等式をもとに「はさみうちの原理」で仕留められます。 (3) も「積分漸化式の作成は部分積分」というこれまでの学習内容でよいですね。 (4) は示すべき \(\displaystyle\frac{1}{○!}\) という形が (3) の結果に表れていますから、それを活かすように進めていきます。