極限

2022/9/20

フィボナッチ数列とリュカ数列 第2講【リュカ数列の一般項】【隣接2項の最大公約数と極限】【1994年度 姫路工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っていたという状態となれば幸いです。 シリーズ一覧 第2講は リュカ数 ...

2022/7/13

極限の有限確定条件【1986年度 お茶の水女子大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 分数形の関数の極限が有限確定値に収束するための条件について考える問題です。 話題としては定番の話題に入ると言ってよく、試験場で初見というのは難関大受験生としては準備不足と言わざるを得ないでしょう。 出典をあげればキリがありません。 もっと手ごろな「The例題」という問題もゴロゴロありますが、今回の例題は極限の計算力を手ごろに試せる実戦的な良問としました。 今回は例題のような定番のタイプに加え、少し味付けの違うタイプの問題も2題準備してあります ...

2022/7/6

ニュートン法【接線のx切片によって定まる数列】【1995年度 名古屋大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) ニュートン法と呼ばれる「よりよい近似解」を求めるアルゴリズムについて考える問題です。 問題を解くこと自体は誘導がついているため、きちんとした基礎学力があれば無理なく進められるようにはなっています。 グラフ的に考えると、最後の極限の値は予測できますし、今回の数列 \(\{x_{n}\}\) がどのような数列であるかも理解できるでしょう。 ただ、グラフ的に考えるのはあくまでイメージで ...

2022/6/25

sin∞タイプの極限【1995年度 埼玉大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\sin{\infty}\) という一見収束しないように見える形の極限値を求める問題です。 結果的にこの極限が収束するというのは、感覚的に不思議な感じがします。 本問は適切な誘導があるために、完答するのもそこまで無理な話ではありません。 しかし、ノーヒントだと多くの人がアタフタして終わりということになりかねないでしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について ひとまず、目がチカチカする ...

2022/6/22

確率と区分求積法【2019年度 兵庫県立大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 確率の問題をベースに、極限計算の運用を見る問題です。 ひとまずは確率そのものを計算できるかどうかという部分が問われます。 ひとたび確率が計算出来たら、今度は数学Ⅲの極限の話題です。 一問で様々な基本を試す標準的な問題で、難関大受験生にとってはこういうレベルの問題をキッチリと確保したいところです。 (以下ネタバレ注 ...

2022/5/4

コッホ雪片【フラクタル図形】【2010年度 北海道大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) コッホ雪片と呼ばれる有名な図形を題材とした問題です。 操作の意味と特徴をしっかりと把握できれば、問題の難易度自体は標準的な難易度です。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 今回の操作 今回の操作は というように、外側に「ボコ」っと盛り上がるようなイメージです。 今回の図形のイメージ 今回の図形 \(D_{0}\) ,  \(D_{1}\) ,  \(D_{2}\) \(\cdots\) のイメージは とい ...

2022/3/26

2022年度 九州大学 理系第2問【3次式で割った余りと極限】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 訊き方をもう少しマイルドにすれば手が付く受験生も多少増えるとは思いますが、敷居の高い訊き方をしているので、(1) から怯んでしまった受験生も多かったと思います。 (1) は要するに \(x^{n}\) をうまく式変形して \((x-\alpha)(x-\beta)^{2}Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C\) という形にしてみてね。 という問いかけなのですが、「存在することを示せ」と言われ、何をすれ ...

2022/3/23

2022年度 大阪大学 理系第4問【縮小関数による漸化式】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 縮小関数によって定まる漸化式によって定まる数列の極限を考える問題で、難関大を目指すにあたっては経験を積んでおきたい話題です。 本問は今回のテーマを学ぶにあたって、標準的な内容であり、今後このテーマの例題として様々な教材で扱われるでしょう。 キーワード ①:\(f'\) の範囲 ( 最大・最小 ) ②:\(f(x)=x\)  (不動点の存在) ③:\(a_{n+1}=f(a_{n})\) という漸化式 オチはあらかた決まっていて、③の漸化式と② ...

2022/3/6

2022年度 東北大学 理系第5問【空間における直線のベクトル方程式と漸化式】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題文が長く、何を言っているのかを把握するのに集中する必要があります。 まじめな受験生ほど、律儀に絵を描こうとして、この題意の把握に時間をとられてしまう恐れはあります。 正確な図を描こうという心意気は大切ですが、 立式するために必要な見やすい図 が描ければ事足ります。 というように、 \(l\) ,  \(l'\) がそれぞれ \(\vec{a}\) ,  \(\vec{b}\) を方向ベクトルにもつ。 交互に垂線を下ろしあう という状況をし ...

2022/3/6

2022年度 東北大学 理系第4問【2直線に接し外接する2円】

問題はこちら(画像をクリックするとPDFファイルで開きます。) という状況はよくあるシチュエーションで、この構図を扱ったことのある受験生は多いかもしれません。 様々な文字が飛び交う一般的な設定なので、何を何で表すのかということを見失わないようにしっかりと整理していきたいところです。 オチについては、前半の (1) ,  (2) が確保できれば割とボーナス問題です。 特別な解法を必要とするわけではなく、素直に状況を立式していけば結論まで辿り着けます。 ただ、色々解法が目につき、目移りするかもしれません。 確 ...

© 2022 MathClinic