極限

2023/4/9

2023年度 名古屋大学 理系 第2問【2円で囲まれる部分のx軸回転体】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 2円が相異なる2点で交わるとき、2円で囲まれる部分の \(x\) 軸回転体の体積について考える問題です。 文字を多く含み、計算量が多少あるものの少なくとも (2) ,  できれば (3) までは何とか辿り着きたいところです。 (4) は (3) で得た \(V(r)\) を \(r\) で微分し、\(V'(r)\) を計算して増減表を得ることができれば解決なので、方針面では迷う余地はありませんが、かなりエグイ計算に襲われます。 \(r=a-b ...

2023/3/28

2023年度 大阪大学理系第1問【メルカトル級数に関する極限】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た目で怯んでしまう人が多そうです。 重い数Ⅲをよく出題する阪大ですが、本問は計算量そのものはそこまで大変ではありません。 メルカトル級数 \(\displaystyle \sum_{k=1}^{\infty} \displaystyle \frac{(-1)^{k-1}}{k}=\log{2}\) という有名な級数に関する類題経験があると、(1) の活用法が見えやすくなります。 この分野は特に現役生が苦手意識をもったまま試験当日を迎えやすい ...

2023/3/21

2023年度 北海道大学理系第1問【複素数平面上の図形列】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数平面上で帰納的に定まる図形の列について考える問題です。 試しに \(C_{1}\)から \(C_{2}\) を作ってみると、構造や要領がつかみやすいと思いますし、 それができるなら \(C_{n}\)から \(C_{n+1}\) を作るのもできるはずです。 変換の意味を考えてみると、 \(\displaystyle \frac{1}{2}\) 倍縮小&平行移動 で、半径がどんどん半分になっていく円であることは想像できる人にはできるのでし ...

2023/3/15

2023年度 九州大学理系第2問【絶対値のついた漸化式】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 漸化式は2項間漸化式なのですが、絶対値が付いているという点で面食らう受験生も多かったと思います。 こういった得体のしれない漸化式については、 実験して情報や要領をつかみ取る という態度で愚直に調べていくしかありません。 何かうまい方法はあるか と式変形に固執してしまうと身動きがとれなくなります。 試験場補正もかかりやすく、論述も手慣れていないとうまく記述しづらいため、完答しづらい問題です。 問題自体は面白く、思考力を鍛える教材としては積極的に ...

2023/3/10

2023年度 東北大学理系第2問【三角関数の方程式の解の個数と極限】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 三角関数に関する方程式の解と、その解の個数に関する極限について考える問題です。 今回の \(\sin{3x}+\sin{x}=0\) という方程式の解を求めること自体は基本的なレベルであり、(1) は確保しないとツライものがあります。 実質は (2) の勝負です。 \(m\) 以下の解の個数を把握しようと思うと \(m\) がどの程度の大きさなのか ということに興味がいくでしょう。 今回の方程式の正の解は \(x=\displaystyle ...

2023/2/25

2023年度 東京大学理系第1問【定積分の不等式評価と区分求積法】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分の不等式評価と、区分求積法からのはさみうちの原理による極限の導出を考える問題です。 オープニングとしては中々けたたましいファンファーレに感じた受験生も多いでしょう。 \(B_{n}\) を具体的に計算できないこと、及び (1) の不等式評価を誘導と見れば (1) の不等式評価を用いてはさみうちの原理で仕留める というオチを睨むことは難しくありません。 ただ、肝心かなめの (1) の評価が簡単ではなく、第1問という位置取り的にも平常心を乱 ...

2023/1/25

nのn乗根の極限【1985年度 鹿児島大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) \(\sqrt[n]{n}\) の極限についての問題です。 \(\sqrt[n]{n}=n^{\frac{1}{n}}\) ですから、\({\infty}^{0}\) という形の不定形ということになります。 本問は丁寧な誘導がついていますので、その誘導に乗れれば、完答することは難しくはありません。 その誘導自体も定番の不等式なので、経験があれば即沈みます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 例題について ...

2022/9/20

フィボナッチ数列とリュカ数列 第2講【リュカ数列の一般項】【隣接2項の最大公約数と極限】【1994年度 姫路工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習ではフィボナッチ数列、及びリュカ数列にまつわる話題を取り扱っていきます。 古典的な内容となるため、いいか悪いかは別として知っている人からすればアドバンテージになり得る内容です。 細かな知識を事細かに逐一全て覚えなきゃと身構える必要はなく、高校で学習する基本事項の運用で訊かれていることを導出できればそれで構いません。 一つのストーリーとして気がついたら頭に入っていたという状態となれば幸いです。 シリーズ一覧 第2講は リュカ数 ...

2022/7/13

極限の有限確定条件【1986年度 お茶の水女子大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 分数形の関数の極限が有限確定値に収束するための条件について考える問題です。 話題としては定番の話題に入ると言ってよく、試験場で初見というのは難関大受験生としては準備不足と言わざるを得ないでしょう。 出典をあげればキリがありません。 もっと手ごろな「The例題」という問題もゴロゴロありますが、今回の例題は極限の計算力を手ごろに試せる実戦的な良問としました。 今回は例題のような定番のタイプに加え、少し味付けの違うタイプの問題も2題準備してあります ...

2022/7/6

ニュートン法【接線のx切片によって定まる数列】【1995年度 名古屋大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) ニュートン法と呼ばれる「よりよい近似解」を求めるアルゴリズムについて考える問題です。 問題を解くこと自体は誘導がついているため、きちんとした基礎学力があれば無理なく進められるようにはなっています。 グラフ的に考えると、最後の極限の値は予測できますし、今回の数列 \(\{x_{n}\}\) がどのような数列であるかも理解できるでしょう。 ただ、グラフ的に考えるのはあくまでイメージで ...

© 2023 MathClinic