問題はこちら(画像をクリックするとPDFファイルで開きます。)

難関大学では、有名なゲームをネタにしたような出題が時折出題されます。
本問は双六をモデル化した問題です。
答えを出す難しさというよりも、的確な表現で紙面上に記述する難しさがあるかもしれません。
表現力も問われてくると思います。
(以下ネタバレ注意)
+ クリック(タップ)して続きを読む
結局、2 ~ 7 というリーチゾーンの場所にいるならば毎回毎回
確率 \(\displaystyle \frac{1}{6}\) でゴールする
または
確率 \(\displaystyle \frac{5}{6}\) でリーチゾーンに戻る
のいずれかであるということを見抜くことが急所となります。
解答ではもう少しフォーマルな表現で記述してあります。
ただ、そうなってくると「座標1」を踏むか踏まないかということが気になりますので、場合分けをすることになるでしょう。
解答はコチラ
今回は復習用問題2題つけておきます。
1題は完全なる類題。
もう1題は「少し設定が変わったらどうする?」という問題です。
セットで解いてみることで色々な気づきがあると思います。

復習用問題の解答はコチラ

復習用問題2の解答はコチラ