積分法

2024/3/27

2024年度 東北大学理系第1問【放物線と2直線で囲まれた領域の面積】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 放物線と2直線で囲まれた領域の面積に関する問題です。 文字を含んだ放物線を扱うため、計算量について身構えますが、数値的にキレイに仕組まれているため思っているほどの負担感は感じません。 様々な捌き方がありますが、基本的には手なりに進めていける問題です。 特に(3)は(2)ができていればボーナス的な問題であるため、しっかりと完答したいところです。 接点 \(\mathrm{Q}\) の \(x\) 座標 \(q\) の導出については、判別式の路線 ...

2024/3/25

2024年度 京都大学理系第5問【領域の面積と極限】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 連立不等式で表された領域の面積と、その極限に関する問題です。 今回扱う \(y=\displaystyle \frac{e^{x}-e^{-x}}{2}\) ,  \(y=\displaystyle \frac{e^{x}+e^{-x}}{2}\) は双曲線関数と呼ばれる有名曲線であり、 \(\sinh{x}=\displaystyle \frac{e^{x}-e^{-x}}{2}\) ,  \(\cosh{x}=\displaystyle ...

2024/3/7

2024年度 東京大学理系第5問【空間の三角形の回転体】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間における三角形の回転体の体積というシンプルな題意です。 空間座標における回転体の体積は東大頻出のトピックスで、凝ったものから標準的なものまで出題されてきましたが本問は標準寄りの問題です。 過去問を通じて演習を積み、しっかりと仕上げてきた受験生であれば心理的に慌てずに立ち向かえたと思います。 一般に 空間座標における回転体の扱い方 全体像を捨てろ 切ってから回す(先に回すな) 回転の中心からの最大距離・最小距離を捉える がポイントになる点で ...

2024/2/29

2024年度 東京大学理系第2問【絶対値付きの定積分とtan置換】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 絶対値付きの定積分で表された関数の最大値と最小値を求める問題です。 絶対値を外すにあたって本来であれば場合分けが必要ですが、\(0 \leq x \leq 1\) によって \(\displaystyle \int_{0}^{x} \displaystyle \frac{|t-x|}{1+t^{2}}dt+\displaystyle \int_{x}^{1} \displaystyle \frac{|t-x|}{1+t^{2}}dt\) と区 ...

2023/4/9

2023年度 名古屋大学 理系 第2問【2円で囲まれる部分のx軸回転体】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 2円が相異なる2点で交わるとき、2円で囲まれる部分の \(x\) 軸回転体の体積について考える問題です。 文字を多く含み、計算量が多少あるものの少なくとも (2) ,  できれば (3) までは何とか辿り着きたいところです。 (4) は (3) で得た \(V(r)\) を \(r\) で微分し、\(V'(r)\) を計算して増減表を得ることができれば解決なので、方針面では迷う余地はありませんが、かなりエグイ計算に襲われます。 \(r=a-b ...

2023/3/28

2023年度 大阪大学理系第1問【メルカトル級数に関する極限】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た目で怯んでしまう人が多そうです。 重い数Ⅲをよく出題する阪大ですが、本問は計算量そのものはそこまで大変ではありません。 メルカトル級数 \(\displaystyle \sum_{k=1}^{\infty} \displaystyle \frac{(-1)^{k-1}}{k}=\log{2}\) という有名な級数に関する類題経験があると、(1) の活用法が見えやすくなります。 この分野は特に現役生が苦手意識をもったまま試験当日を迎えやすい ...

2023/3/20

2023年度 九州大学理系第5問【パラメータ表示で与えられた曲線についての面積】

問題はこちら(画像をクリックするとPDFファイルで開きます。) パラメータ表示で与えられた曲線についての面積を考える問題です。 やること自体は一本道であるため、方針面ではそこまで迷うことはないのですが、途中で出てくる数値がお世辞にもキレイではないため、不愉快な計算に襲われます。 細かな部分まで詰めようとすると結構神経を使うため、気疲れします。 グラフの概形的に面積をどう捌くかが問題で、面積の立式さえできれば積分計算自体は標準的なものですが、筋の悪い方向にいってしまい収拾がつかなくなってしまう受験生もそれな ...

2023/3/13

2023年度 東北大学理系第6問【長さと傾きが一定の線分の通過領域】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 線分の通過領域と、その面積を求める問題です。 線分の通過領域と聞いて身構えますが、今回の線分は 長さと傾きが一定の線分 であり、目で追っていくことができます。 その際 (1) がその補助となる部分です。 方針面では困ることはないでしょう。 ただ、細々とした算数計算や、面積を求めるのに必要な部分をチョコチョコ計算していると時間がかかります。 面積計算も、まともにぶつかると少々骨が折れますので、図形的考察をはさみながら少しでも労力を減らす工夫を試 ...

2023/3/6

2023年度 京都大学理系第5問【線分の通過領域と回転体】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 線分の通過領域による立体の体積を求める問題です。 点 \(\mathrm{P}\) は1次元的な動きですが、点 \(\mathrm{Q}\) は2次元的な動きをします。 同時に動かすと中々想像がつきませんが、ひとまず 点 \(\mathrm{P}\) を固定して \(\mathrm{Q}\) だけ動かす といったように、一つずつ動かすと分かりやすいでしょう。 独立2変数の扱いに通じる部分がありますね。 この態度で考えを進めると、結局は \(\ ...

2023/3/2

2023年度 京都大学理系第1問【定積分の計算・高次式の余り】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 京大が定期的に取り入れる小問集合形式の問いです。 いずれも完答は現実的な範疇ですので、ここをキッチリと取って勢いにのっていきたいところです。 問1は基本的な定積分の計算問題で、部分積分一発で沈みます。 問2は年度に絡めた高次式 \(x^{2023}-1\) を \(x^{4}+x^{3}+x^{2}+x+1\) で割ったときの、余りについて考える問題です。 \(x^{4}+x^{3}+x^{2}+x+1\) という形を見て \(x^{5}-1 ...

© 2025 MathClinic