場合の数・確率

2024/3/11

2024年度 京都大学理系第1問【立方体の隣り合う面が異色で塗られる確率】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) 色を準備し、立方体の各面を隣り合う面が異色となるように塗り分ける確率について考察する問題です。 立方体の塗り分けについての場合の数の問題だと、回転による一致や、裏返しによる一致を考慮する必要が出てきたりして、苦い思いをした経験がある人が多いと思います。 それに引きずられると、下手なことを考え出してクシャクシャになりかねません。 本問は確率の問題であり、各面に区別をつけ、全事象を \(n^{6}\) 通りとして考えることで、上述の回 ...

2023/4/3

2023年度 大阪大学理系第5問【サイコロの目によってできる数が7で割り切れる確率】

問題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロの目によってできる数 \(b_{n}\) が \(7\) で割り切れる確率を求める問題です。 実験的な設問もあり、今年のセットの中では比較的標準の難易度の問題であるため、できれば確保したいところです。 \(b_{n+1}=a_{1}b_{n}+a_{n+1}\) という関係式から、\(a_{1}b_{n}\) を \(7\) で割った余りに応じて、\(n+1\) 回目の目である \(a_{n+1}\) の目が 1 つ決まるということに ...

2023/3/26

2023年度 北海道大学理系第4問【さいころの目で定まる値に関する確率】

問題はこちら(画像をクリックするとPDFファイルで開きます。) さいころの目によって定まる値のとり得る値に関する考察問題で、見かけで怯んでしまう受験生も多そうです。 文系との一部共通問題で、文系では \(K_{2}=5\) となる確率を求めよ。 というさらなる実験的設問がありましたが、理系ではカットされています。 (1) の \(K_{3}=5\) という場合でもよく見えなかった場合、自分で \(K_{2}=5\) という場合も考えてみるのも一つの手で、とにかく実際に手を動かす中で要領を掴むことが大切です ...

2023/3/8

2023年度 東北大学理系第1問【玉を交互に取り出すゲーム】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\mathrm{A}\) ,  \(\mathrm{B}\) の2人が玉を交互に取り出していき、 \(\mathrm{A}\) が赤玉を取り出したら \(\mathrm{A}\) の勝ち \(\mathrm{B}\) が白玉を取り出したら \(\mathrm{B}\) の勝ち というゲームに関する確率です。 (1) ,  (2)  いずれにしても、題意を満たすような玉の取り出し方は限定的なので、どのような事象が起こればよいのかを追っていき ...

2023/3/4

2023年度 京都大学理系第3問【サイコロの目の積についての確率】

問題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロを投げて出た目の総積について考える問題で、話題としては典型テーマです。 悪くいってしまえば正直どの大学で出題されてもおかしくなく、個性はないと言ってよいでしょう。 下手をすると進学校であれば定期考査レベルの問題ですので、正直言って確保しないと大ダメージです。 (この問題で配点30点ですからね。) 特に (1) は京大を本気で目指してきた受験生からするとバカにするなという感想が出てきてもおかしくないでしょう。 解答はコチラ なお、京大は ...

2023/2/26

2023年度 東京大学理系第2問【隣り合わない並びと条件付き確率】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 隣り合わない並びという話題で、オチは条件付き確率というテーマ自体はよくある話題です。 隣り合わない並びを実現させるための手段としては 隙間に放り込む というのが有力な方法です。 (1) は先に白と黒を並べて、赤を隙間に放り込めばよいわけです。 確率ですから、玉は区別して考えればよいでしょう。 白と黒の並べ方が \(8!\) 通りあり、赤玉は隙間の9カ所から4カ所選んで並べればよいため、 \(8! \cdot 9 \cdot 8 \cdot 7 ...

2023/2/19

1000以下の素数の個数【2021年度 一橋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 2021年度入試の中でも注目度が一際高かった問題です。 問題文の意味自体は下手すると小学生でも分かりますが、実際に試験場で見ると面食らう受験生も多かったかもしれません。 実際に自分ではできたつもりでも、実は数え方がマズく証明できていないということにもなりかねないため、自分の手応えと実際の出来具合にはギャップがあるかもしれません。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 方向性 素数よりも合成数の方が数えやすい ...

2022/12/19

条件付き確率【原因の確率】【1976年度 早稲田大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 条件付き確率についての基本演習問題です。 条件付き確率の基本的なイメージを掴むとともに、何を求めるべきなのかをしっかりと芯でとらえられるようになりましょう。 本問は古い問題ですが、最近の教科書傍用問題集や網羅系参考書などにも収録されている条件付き確率に関する古き良き名作です。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 条件付き確率の定義とイメージ ...

2022/11/9

仮想難関大(オリジナル予想問題)【確率~最後の赤球~】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回は確率の問題です。 シンプルな題意とは裏腹に意外と考えにくさがあると思います。 切れ味鋭く切れ込む解答を見ると、京大らしく感じるでしょうし、愚直に進めるとスタミナが必要な東大らしさを感じると思います。 (以下ネタバレ ...

2022/7/29

一般化 第4講【分野の拡張】【2007年度 京都大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習では「一般化」という考え方を自分のモノにします。 問題文で与えられている特殊なシチュエーションを、より一般のシチュエーションに拡張して考えるという手法です。 このシリーズの一覧はコチラ 第4講では、「分野の拡張」ということをテーマとします。 一般化することで強力な武器が手に入ることを実感してくださ ...

© 2025 MathClinic