- HOME >
- Kenichiro Iwata
Kenichiro Iwata
【モットー】:凡人の数学 ☛大学入試の数学は「正しく」勉強すれば報われることを伝えたいと思います。 【生業】:大学受験指導 【経歴】:名古屋大学理学部数理学科卒 【目標】:サイト名に込めました。(現在目標達成に向けて日々邁進)
主に難関大学合格にむけた数学の入試問題の解説をしています。
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間座標における2つの円を扱う問題です。 空間の図形問題は苦手意識をもつ受験生も多く、差がつきやすいトピックスでしょう。 本問は題意の把握、把握後の立式、立式後の処理と各ステージで山場があり、完答するためには確かな力が必要となります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 題意の把握 一見、 「ん?どういう状況だ?」 と身構える問題です。 条件 (a) を見た印象としては 「原点中心、半径 \(1\) の球 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た目はベクトルの問題ですが、様々な解法が考えられます。 そのままベクトルで捌くのもいいですし、少し凝った解法で捌いてもよいでしょう。 正攻法に攻めても問題なく捌けるという点は試験場ではありがたいですね。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 路線1:ベクトル 見た目通りベクトルの問題として捌いていくことを考えてみます。 まず、3点 \(\mathrm{A}\) , \(\mathrm{B}\) , \ ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 放物線と2直線で囲まれる部分の面積についての立式がメインテーマです。 構図としてはシンプルな構図なのですが、計算面で心がへし折られる受験生がかなり多いと思います。 これを試験場でバシッと計算を合わせるのは至難の業と言ってよいでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 領域の図示 ひとまず題意の領域を図示したいと思います。 放物線 \(y=x^{2}\) の上側というのはいいでしょう。 \((y-kx- ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回は整数の問題です。 ブロカールの問題と言われる次の問題があります。 ブロカールの問題 \(n\) を正の整数として、 \(a_{n}=n!+1\) とするとき、\(a_{n}\) が平方数となる \(n\) を全て求 ...
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 条件付き確率についての基本演習問題です。 条件付き確率の基本的なイメージを掴むとともに、何を求めるべきなのかをしっかりと芯でとらえられるようになりましょう。 本問は古い問題ですが、最近の教科書傍用問題集や網羅系参考書などにも収録されている条件付き確率に関する古き良き名作です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 条件付き確率の定義とイメージ ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回は整数の問題です。 等差数列の中で連続する素数の個数を考える問題です。 これについては グリーン・タオの定理 任意の正の整数 \(n\) に対して、\(n\) 個の項からなる素数等差数列が存在する。 というテレンス・ ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回は幾何の問題です。 重心や外心、内心などは幾何的性質も豊富ですが、垂心についての幾何的性質については中々スポットが当たらないので、これを機に考えてみてほしいと思います。 難易度は冷静な状態であればやや易でしょうが、試 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 正八面体の辺ベクトルについての論証問題であり、一見するとどこから手を付けていいのかが分かりにくい問題でしょう。 題意の主張が当たり前じゃんと思える人もいるでしょうが、どのように記述でまとめるかで悩むかもしれません。 解答自体は短く終わりますが、手も足も出ない人がいてもおかしくはないと思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 内積の符号とベクトルのなす角 一般に2つのベクトル \(\vec{a}\) ...
例題はこちら(画像をクリックするとPDFファイルで開きます。) 訊かれていること自体はそこまで複雑なものではありませんが、頭に血が昇りやすい問題です。 何のプランもなく気の向くままに解き進めていくと、中々うまくいかない歯がゆさを感じると思います。 手元にある条件と、辿り着くべき目的をしっかりと認識し、その間をどのように埋めていくかということを一個ずつ丁寧に詰めていく力が必要です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 手元にある条件 辺の長さ \(a\) , \(b\) , \( ...
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) トロコイドという有名曲線を扱った問題です。 トロコイドとは 円が滑らずに転がったときの円の内部または外部の定点の軌跡 です。 円周上の定点の軌跡はサイクロイドと呼ばれる有名曲線です。 基本的にはサイクロイドに準ずる態度でトロコイドのパラメータ表示を得ていきます。 ひとまずサイクロイドに関してまだ足元がグラグラということであれば でサイクロイドについての問題を扱っています。 (以下 ...
© 2024 MathClinic