対偶の威力【1998年度 大阪府立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 2次不等式の運用に関しての問題ですが、まともにぶつかると泥沼に嵌まる可能性が十分にあります。 一度は泥沼に嵌まるのも悪くはないです。 その経験は今後にむけて大きな糧となると思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む まともに解くと 条件 \(p\) が \(q\) であるための十分条件ということは 命題 \(p \Rightarrow q\) が真である ということです。 厳密には言葉足らずの部分もあ ...
仮想難関大(オリジナル予想問題)【2次関数~通過点に関する論証~】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回は2次関数に関する問題です。 タカが2次関数となめてかかると火傷するかもしれません。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \((2 \ , \ 0)\) , ...
素数生成多項式【2002年度 慶応義塾大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問にまつわる話としては、オイラーの見つけた \(f(x)=x^{2}+x+41\) という式が有名です。 \(f(0)=41\) \(f(1)=43\) \(f(2)=47\) \(f(3)=53\) というように、素数を生成し続けます。 ただ、これは永遠に素数を生み出し続けるわけではなく、 \(f(40)=40^{2}+40+41=40 (40+1)+41=41^{2}\) となり、合成数も生まれてしまいます。 ただ、結構な長さで素数を生 ...
離散量の不動点定理【1973年度 名古屋大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 離散量の不動点定理と呼ばれる有名な話題を扱います。 計算自体はほとんどありません。 構造を見抜く目と、それを記述しまとめる力が求められます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 題意を噛み砕く まず、問題文で何を言っているのかということをしっかりと把握します。 \(f\) という関数(写像)は「対応」という言葉で読み替えるとシックリくると思います。 イメージ的には というように、 \(1\) を \(1\) から \( ...
フェルマー数【各種性質】【2006年度 岐阜大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問のように、\(n\) を \(0\) 以上の整数として、\(a_{n}=2^{2^{n}}+1\) という形で与えられる数を フェルマー数 と言います。 フェルマー数を小さい方から並べると \(a_{0}=2^{1}+1=3\) \(a_{1}=2^{2}+1=5\) \(a_{2}=2^{4}+1=17\) \(a_{3}=2^{8}+1=257\) \(a_{4}=2^{16}+1=65537\) となり、ここまでは全て素数です。 フ ...
リプシッツ連続【全称命題とその運用】【2004年度 信州大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 必ず成り立つ不等式を文字通り絶対不等式と言います。 本問はある程度の演習をこなしている人からすると、あるものがインスピレーションされると思います。 そして、本問の \(k\) の最小値について予測できてしまうとも思います。 ただし、細かな部分まで詰めていこうとすると結構ウルサイ問題です。 採点基準にもよりますが、自分の手ごたえと実際の得点率にはギャップがある問題かもしれません。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 形的 ...
天井関数と床関数(ガウス記号)に関する極限【2000年度 大阪大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) ガウス記号(床関数)が絡んだ極限と、その親戚(兄弟)のような天井関数が絡んだ極限について扱います。 指導者の間ではこんな言葉があります。 絶対値を絡めると平均点が5点下がる ガウス記号を絡めると平均点が10点下がる もちろん「何点満点なんだよ」とかどうでもいい突っ込みはやめてくださいね(笑) 要するに多くの受験生が苦手意識をもつ話題だということです。 例えばですが、 ...
定積分を扱う際のモノの見方【2005年度 神戸大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分を含んだ抽象的な関数に関する論証問題です。 定積分をどう捉えるかというのが本問のテーマではありますが、それに加えて、 抽象的な関数に関する心得 というものも今後の糧としたい教訓の一つとなります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 今回考える \(\displaystyle \lim_{x \to 0}g(x)=\displaystyle \lim_{x \to 0} ...
n次方程式の解の限界【掛谷の定理】【1975年度早稲田大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 類題3はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) 次方程式の解の限界を係数を用いて考えるという古典的な話題です。 係数を見ただけで、その \(n\) 次方程式の解の限界が判断できるとなれば、それは結構有用性がありますね。 まずは2次方程式という具体的な場合についてを例題と ...
いずれかが成り立つ不等式【1987年度 早稲田大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) \(A \geq n\) , \(B \geq n\) の少なくともどちらかは成り立つということを証明するという問題です。 方針面で「こうしてみようかな」という構想は出てくると思います。 解き終わってみると、ワンポイントレッスンのような問題に感じるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 第一感は背理法 \(A \geq n\) または \(B \geq n\) が成り立つことを示すにあたり、少なくとも一方が成 ...