2024年度 東北大学理系第3問【文字列作成に関する確率漸化式】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 文字列作成に関する確率漸化式についての問題です。 問題文が長く、把握に時間がかかりそうですが、読み解いてみると、 ①:確率 \(\displaystyle \frac{2}{3}\) で末尾に A を追加 ②:確率 \(\displaystyle \frac{1}{3}\) で末尾に B を追加 ③:AAA というような A の3連続は不可 ④:BB というような B の 2 連続は不可 というルールで文字列を作成していくという単純なルールで ...
2024年度 東京大学理系第3問【対称性のある確率漸化式】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 座標平面上を\(x\) 軸、\(y\) 軸、\(y=x\)、\(y=-x\) を対称軸として対称移動していく動点 \(\mathrm{P}\) に関する確率の問題です。 良心的な誘導設問があるため、その誘導にきちんと乗れれば完答も無理はないレベルでしょう。 本問は \(p_{n}\) などの設定が問題文の段階では設定されていないため、漸化式を導入するか否かという判断は自分ですることになります。 本問は動点 \(\mathrm{P}\) は限ら ...
2023年度 大阪大学理系第5問【サイコロの目によってできる数が7で割り切れる確率】
問題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロの目によってできる数 \(b_{n}\) が \(7\) で割り切れる確率を求める問題です。 実験的な設問もあり、今年のセットの中では比較的標準の難易度の問題であるため、できれば確保したいところです。 \(b_{n+1}=a_{1}b_{n}+a_{n+1}\) という関係式から、\(a_{1}b_{n}\) を \(7\) で割った余りに応じて、\(n+1\) 回目の目である \(a_{n+1}\) の目が 1 つ決まるということに ...
抽象的な事象の確率と漸化式【1985年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 玉を取る、カードを取る、サイコロを投げる、といったいかにも確率の題材となる具体的試行ではなく、ある変数が整数 \(n\) という値をとる確率が \(p_{n}\) という抽象的な設定の問題です。 基本的な処理力だけでなく、その場力も加えた総合的な力が必要な良問です。 試験場ではキッチリと差がつく問題で、確保できればアドバンテージになる難易度だと言えましょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 条件の立式 ...
サイコロの目による漸化式【2012年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロの目によって決まっていく漸化式から得られる値がある範囲内に収まっている確率を求める問題です。 いかにも何かありそうな設定ですが、切り崩すために必要なものは 10%の工夫と90%の泥臭さ です。 この問題のオチは「表向き」と「裏向き」の2種類のオチがあります。 どちらも京大が度々用意するオチです。 (以下ネタバレ注意) + クリック(タップ)して続きを読む この漸化式の構造 今回の \(Y_{n}\) は \(Y_{n}= ...
ババ抜きの確率【1995年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題をよく見てみると、「ババ抜き」をモデルにした問題だと分かると思います。 2人でやるババ抜きはあまり面白くありませんが、数式的には、京大の入試問題として成立するぐらいの問題にはなります。 本問で言う 0 がババに相当します。 この状態でババをもっている \(A\) からスタートしたら、確実に(自動的に)手が進み \(\{0 \ , \ 1 \ , \ 2 \ \cdots \ , \ n\}\) , \(\{1 \ , \ 2 \ , \ ...
漸化式の視覚化【視覚的な意味と操作の意味を考える】【2015年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\displaystyle \frac{1}{2}\) からスタートし、2種類の関数を用いて次々と値を出して数列を作っていくという操作について考えます。 京大らしく、シンプルな問題ですが簡単ではありません。 これまた京大の特徴の一つである「誘導がない」形式での出題なので、構想から自分で組み立てる必要があります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む この数列の振る舞いをどう捉えるか 簡単な実験をしてみて ...
確率漸化式【状態推移をとらえる練習】【立式した漸化式の処理】【2007年度 お茶の水女子大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 難関大頻出テーマである「確率漸化式」をテーマとした問題です。 難関大において、確率漸化式の問題は基本的なものから、凝ったものまで幅広く出題されていますが、本問は 難関大に向けた演習として負荷が適度である ということを意識して選びました。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 漸化式の立式 (1) という設問が、 \(n-1\) 回目と、\(n\) 回目の状態推移を考 ...
仮想難関大(オリジナル予想問題)【確率~サイコロの目の積が平方数となる確率~】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で最後の力試しがしたい」 という方はぜひご活用ください。 今回はサイコロの目の積シリーズです。 「サイコロの出た目の総和や総積が◎の倍数となるような確率を求めよ」 といったような問題はよくある定番の問題としてとりあげられ、皆さんも少なからず経験 ...
確率漸化式【除去型:隣り合う領域を異なる色で塗る塗り方】【1996年度 麻布大学ほか】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) 角地図という独特な言い回しが目につく問題です。 4色定理 境界線で囲まれるいくつかの領域からなる平面図形があり、境界線を共有する隣り合った領域は異なった色で塗らなければならない。 このとき、この平面図形を塗り分けるには4色あれば十分である。 という主張があり、長年未解決問題で、4色問題と呼ばれていました。 現在は解決し、4色定理と呼ばれています。 証明はコンピューターを利用したかなり強引な力業による証明 ...