極限・微分積分系

2021/9/9

実数解の個数【色々見えるn次方程式】【1994年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 方程式の実数解の個数を数えるというテーマとしてはよくある話題です。 ただなまじ色々見える分、方針決定が難しく、押し通すにしてもそれなりに腕力が必要なので、各方針の引き際を見極めるのが難しいと思います。 試験場ではこういった 色々見えるものがあり、うまくやろうと試みたが結局うまくいかず、愚直にゴリゴリ進めるのが最善だった という類の問題が厄介です。 特に本問は「作為めいた匂いのする設定」が見た目から漂ってきます。 (以下ネタバレ注意) &nbs ...

2021/9/7

ベータ関数【6分の1公式などの拡張】【2015年度 横浜市立大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 通称 \(\displaystyle \frac{1}{6}\) 公式や \(\displaystyle \frac{1}{12}\) 公式と呼ばれる積分公式の一般化であるオイラーの第一種積分、ベータ関数がバックボーンにある問題を扱います。 これらの名前は入試的には無理に覚えなくてもいいですが、シナリオについては難関大受験生としては一度は経験しておきたいです。 入試段階では「こんな話題だな」という頭のラベル付けとして覚えるぐらいの感覚で十分で ...

2021/9/6

リプシッツ連続【全称命題とその運用】【2004年度 信州大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 必ず成り立つ不等式を文字通り絶対不等式と言います。 本問はある程度の演習をこなしている人からすると、あるものがインスピレーションされると思います。 そして、本問の \(k\) の最小値について予測できてしまうとも思います。 ただし、細かな部分まで詰めていこうとすると結構ウルサイ問題です。 採点基準にもよりますが、自分の手ごたえと実際の得点率にはギャップがある問題かもしれません。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 形的 ...

2021/9/5

天井関数と床関数(ガウス記号)に関する極限【2000年度 大阪大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。)   ガウス記号(床関数)が絡んだ極限と、その親戚(兄弟)のような天井関数が絡んだ極限について扱います。 指導者の間ではこんな言葉があります。 絶対値を絡めると平均点が5点下がる ガウス記号を絡めると平均点が10点下がる もちろん「何点満点なんだよ」とかどうでもいい突っ込みはやめてくださいね(笑) 要するに多くの受験生が苦手意識をもつ話題だということです。 例えばですが、 ...

2021/9/4

3次方程式の解の極限【2009年度 兵庫県立大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 3次方程式の解の極限について扱う問題ですが、口で言う以上の様々なテーマや教訓を含んでいます。 極限についてや、方程式の扱いについての実戦問題として得るものが多い良問だと思います。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について これについては基本的な問題で、 ①:単調性と連続性 ②:代入して正となる値の存在 ③:代入して負となる値 の3点を確認します。 ②と③については今回は極限について考えれば十分 ...

2021/8/23

平均値の定理における接点の位置

問題はこちら(画像をクリックするとPDFファイルで開きます。) 平均値の定理そのものについては難関大受験生にとって基本事項の1つです。 本問はその平均値の定理を指数関数 \(f(x)=e^{x}\) に適用したときの接点の位置について考察する問題です。 この問題に出会ったのは、昔自分が受験生のときでしたが、当時の私は色々策に拘り、どうにもこうにもうまくいかず、悩みに悩みギブアップして解答を見ました。 そこには著者の先生の凝りに凝った解答が載っており、「こりゃ思いつかんわ」と唇を噛んだ記憶があります。 悔し ...

2021/8/20

最大公約数についての数列【2012年度 東京都立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 最大公約数についての数列を考え、和などを考える問題です。 標準的なレベルの問題で、野球で例えるなら135km/h 真ん中ちょい高めのストレートって感じですかね。 要するに長打が狙える打ちごろの球なので、できれば打ち損じることなくはじき返してほしいですが、記述面で書きづらさを感じるかもしれません。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について 最大公約数に迫る一つの大きな武器が ユークリッドの互除法 ...

2021/8/18

ウォリスの公式【積分漸化式と極限の良問】【2010年度 大阪教育大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) ウォリスの公式と呼ばれる有名極限を背景にもつ問題です。 入試において大切な要素や手法を含む問題なので、しっかりとモノにしつつ、問題自体で前面に押していないウォリスの公式の美しさについても軽く触れていく欲張りな構成にしたいと思います。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 例題に ...

2021/8/17

sinxに関する有名不等式【sinに関する数値評価】【2008年度 群馬大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\sin{\displaystyle \frac{1}{2}}\) に関する数値評価の問題です。 (1) という誘導があるため、その誘導を利用すれば (2) の数値評価自体はそこまでひっかかることはないと思います。 厄介なのは (1) で、周期性を持つ \(\sin{x}\) の扱い、及び絶対値の処理をどのように処理するかという構想力が問われます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 結局 \(| ...

2021/8/10

定積分を扱う際のモノの見方【2005年度 神戸大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分を含んだ抽象的な関数に関する論証問題です。 定積分をどう捉えるかというのが本問のテーマではありますが、それに加えて、 抽象的な関数に関する心得 というものも今後の糧としたい教訓の一つとなります。   (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について 今回考える \(\displaystyle \lim_{x \to 0}g(x)=\displaystyle \lim_{x \to 0} ...

© 2024 MathClinic