極限・微分積分系

2023/2/8

大小比較【視覚化の工夫】【2004年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 文字を含んだ式の大小を比較する問題です。 単純に差を取って解決すれば問題ないのですが、差をとっても埒があかない問題もあるでしょう。 本問は誘導はなく、方針から自力で考える問題です。 もちろん、取っ掛かりとなる部分は無理のない範囲の発想です。 愚直に攻めてもよし、工夫して鮮やかに捌いてもよしという調理の仕方に幅のある問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 路線1:愚直に攻める 今回の2数 \(\displayst ...

2023/1/25

nのn乗根の極限【1985年度 鹿児島大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) \(\sqrt[n]{n}\) の極限についての問題です。 \(\sqrt[n]{n}=n^{\frac{1}{n}}\) ですから、\({\infty}^{0}\) という形の不定形ということになります。 本問は丁寧な誘導がついていますので、その誘導に乗れれば、完答することは難しくはありません。 その誘導自体も定番の不等式なので、経験があれば即沈みます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 例題について ...

2023/1/20

積分変数の変換【2017年度 富山大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(t\) に依存する3次方程式の解 \(\alpha\) ,  \(\beta\) ,  \(\gamma\) に関する定積分の値を考える問題です。 完答できるかどうかの差はつきやすい問題で、解決する人はあっという間に解決してしまうと思います。 「簡単な難問」、「難しい易問」という言葉がありますが、どちらかというと個人的には難しい易問だと感じました。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(x^{3 ...

2023/1/17

アステロイドの射影【ベクトル方程式の活用】【1999年度 お茶の水女子大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) アステロイドに光を当てたときにできる影について考える問題です。 立式さえできれば、曲線の長さという基本的な計算になりますので、この影が表す図形をどのように立式するかがポイントになってきます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む イメージ図 ひとまずは問題の図形 \(D\) ,  \(D'\) のイメージを掴みたいと思います。 図形 \(D\) の境界線が表す曲線を \(C\) ,  図形 \(D'\) の境界線が表す曲 ...

2022/12/28

放物線と2直線で囲まれる部分の面積【1999年度 大阪府立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 放物線と2直線で囲まれる部分の面積についての立式がメインテーマです。 構図としてはシンプルな構図なのですが、計算面で心がへし折られる受験生がかなり多いと思います。 これを試験場でバシッと計算を合わせるのは至難の業と言ってよいでしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 領域の図示 ひとまず題意の領域を図示したいと思います。 放物線 \(y=x^{2}\) の上側というのはいいでしょう。 \((y-kx- ...

2022/11/29

有名曲線【トロコイド】【2012年度 お茶の水女子大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) トロコイドという有名曲線を扱った問題です。 トロコイドとは 円が滑らずに転がったときの円の内部または外部の定点の軌跡 です。 円周上の定点の軌跡はサイクロイドと呼ばれる有名曲線です。 基本的にはサイクロイドに準ずる態度でトロコイドのパラメータ表示を得ていきます。 ひとまずサイクロイドに関してまだ足元がグラグラということであれば でサイクロイドについての問題を扱っています。 (以下 ...

2022/11/2

2文字の不等式証明【特徴を捉える】【1982年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 2文字を含んだ不等式の証明問題を扱います。 今回は目に付く特徴によって様々な解法が考えられます。 何が自然に見えるかは人それぞれかと思います。 試験場でとれる解法は一通りですが、家で訓練のために解く演習段階ではぜひ色々な解法を考えてみてください。 (以下ネタバレ注意)     + クリック(タップ)して続きを読む 路線1:予選決勝法 今回の2文字 \(a\) ,  \(b\) は大小関係こそあるものの独立に動きます。 独立 ...

2022/10/17

ルーローの三角形【頂点の軌跡】

問題はこちら(画像をクリックするとPDFファイルで開きます。) ルーローの三角形と呼ばれる有名図形を扱った問題です。 出典は1987年度の某全国模試です。 本問のオチは原点にあるルーローの三角形の一頂点の軌跡を捉え、その曲線の長さを求めるという問題です。 頭の中でどのような動きをするのかを追っていく必要があり、動的処理から逃げることはできません。 ロータリーエンジンの原理にも使われていたり、パナソニックのルーロという掃除機もこのルーローの三角形が元となっているなど、実用的にも色々応用されています。 (以下 ...

2022/9/7

微分積分に関する正誤判定【1988年度 大阪教育大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 微分積分に関する正誤判定の問題です。 「それらしい」主張に惑わされないこと。 勝手なMy Rule をふりかざさないこと。 ということに対する教訓にしてほしい問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(f'(x)=g'(x)\) とは \(\{f(x)-g(x)\}'=0\) ということです。 これより \(C\) を定数として \(f(x)-g(x)=C\) ということが言えると思います。 ...

2022/8/28

関数決定の難問【1994年度 埼玉大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) 次関数 \(f(x)\) が導関数 \(f'(x)\) で割り切れるときに \(f(x)\)を求めるというシンプルな問題です。 サラリと訊かれているために、急所がどこにあるのかというのを見逃してしまいかねません。 まずは本問がどの分野の問題であるのかをしっかりと見抜きましょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 条件の立式 \(n\) 次式 \(f(x)\) に対して、その導関数 \(f'(x)\) は ...

© 2025 MathClinic