- HOME >
- Kenichiro Iwata
Kenichiro Iwata
【モットー】:凡人の数学 ☛大学入試の数学は「正しく」勉強すれば報われることを伝えたいと思います。 【生業】:大学受験指導 【経歴】:名古屋大学理学部数理学科卒 【目標】:サイト名に込めました。(現在目標達成に向けて日々邁進)
主に難関大学合格にむけた数学の入試問題の解説をしています。
問題はこちら(画像をクリックするとPDFファイルで開きます。) 線分の通過領域による立体の体積を求める問題です。 点 \(\mathrm{P}\) は1次元的な動きですが、点 \(\mathrm{Q}\) は2次元的な動きをします。 同時に動かすと中々想像がつきませんが、ひとまず 点 \(\mathrm{P}\) を固定して \(\mathrm{Q}\) だけ動かす といったように、一つずつ動かすと分かりやすいでしょう。 独立2変数の扱いに通じる部分がありますね。 この態度で考えを進めると、結局は \(\ ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 関数の最大値、最小値を求めるという極めてド直球なテーマです。 今回の \(f(x)\) は \(g(x)=x+\displaystyle \frac{1}{x}\) \(h(x)={e}^{-x^{2}}+\displaystyle \frac{1}{4}x^{2}+1\) と設定した際に \(f(x)=g(h(x))\) という形になっているいわゆる合成関数です。 \(y={e}^{-x^{2}}+\displaystyle \frac{1 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロを投げて出た目の総積について考える問題で、話題としては典型テーマです。 悪くいってしまえば正直どの大学で出題されてもおかしくなく、個性はないと言ってよいでしょう。 下手をすると進学校であれば定期考査レベルの問題ですので、正直言って確保しないと大ダメージです。 (この問題で配点30点ですからね。) 特に (1) は京大を本気で目指してきた受験生からするとバカにするなという感想が出てきてもおかしくないでしょう。 解答はコチラ なお、京大は ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間ベクトルについての基本問題です。 内分点、中点の位置ベクトルの導出 共線条件 2直線が交点をもつ条件 など、空間ベクトルに関する基本事項のセットとなっています。 なお、あまり律儀にお絵描きする必要はなく、立式の補助としてある程度の図で構わないでしょう。 問題によってはある程度正確に図を書き、図形的な考察を通さないと負担が重くなるような問題もありますが、本問はある程度ラフな図でも立式さえできれば、式的な処理で押し通せる範疇です。 そういった ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 京大が定期的に取り入れる小問集合形式の問いです。 いずれも完答は現実的な範疇ですので、ここをキッチリと取って勢いにのっていきたいところです。 問1は基本的な定積分の計算問題で、部分積分一発で沈みます。 問2は年度に絡めた高次式 \(x^{2023}-1\) を \(x^{4}+x^{3}+x^{2}+x+1\) で割ったときの、余りについて考える問題です。 \(x^{4}+x^{3}+x^{2}+x+1\) という形を見て \(x^{5}-1 ...
2023年度東大理系 各解説記事 150分 6題 記述式 と、形式に変更はありません。 分野的トピックス 東大が好む整数分野からの出題がありませんでした。 また、全体的に第3問、第4問、第6問など図形に関する出題が目立ちました。 各大問について 第1問(標準) 問題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分の不等式評価をし、それを用いてはさみうちの原理で極限を求める問題です。 流れ自体は定番の流れなので、ざっくりとしたシナリオ自体は読み取れますし、(1) の結果を認めてしまえば ( ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 見るからに威圧感のある空間図形の問題です。 問題を噛み砕くのに時間がかかり、突破口を見出すのに時間がかかり、それを計算処理するのに時間がかかり、適切な文章や図でまとめるのに時間がかかり、というようにとにかく時間がかかります。 面白い問題だとは思いますが、試験場では相手にしてはいけない問題です。 結局は (1) では棒、(2) ではヌンチャク(折れ線) が立方体の表面と共有点をもたないように動くときの先端の存在領域を考えることになります。 また ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 整式の割り算と余りに関する論証問題です。 (1) は東大受験生であれば確保したい内容ですが、どちらかというと当たり前的な内容の証明なのでどこまで丁寧さを求めるか迷うところですが、出来る限り丁寧に記述しておきましょう。 (2) は除法の原理 \((割られる式)=(割る式)\cdot (商)+(余り)\) を用いて、与えられた条件を立式していきます。 \({h(x)}^{7}=f(x)Q_{1}(x)+h_{1}(x)\) \({h_{1}(x) ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間座標に関する問題で、ベクトル特有の機械的処理要素もありつつ、図形的な考察力も要する良問です。 (1) , (2) までは東大受験生であれば確保したいレベルで、(3) は差がつくでしょう。 一気に処理しようとせず、一つずつ丁寧に状況を整理していくと、全体像がつかめてきます。 全体像がつかめればこちらのもので、やるべきことや目の付け所が浮かんできやすくなります。 図形的な考察要素を好む東大らしい一問でしょう。 今年のセットの中では他の問題に ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 放物線と円の位置関係から始まり、円の接線が放物線によって切り取られる長さについて考える問題です。 (1) は距離に注目したり、円周上の点をパラメータ表示したり色々捌けるでしょうが、(2) のことを考えるとパラメータ表示をする方が方針面での接続はよさそうです。 (2) はひとまず \(L_{\mathrm{P}}\) を立式するところまでが一つの山場です。 点 \(\mathrm{P}\) における接線の式を立てる \(y=x^{2}\) と連 ...
© 2024 MathClinic