空間座標における回転体の体積【円錐の回転体の体積とその工夫】【2017年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) (1) は難関大志望者であれば、特に手が止まることはないでしょう。 点 \(P\) の軌跡が円となることも容易に把握できると思います。 問題は (2) です。 点 \(Q\) が \(OQ=1\) を満たしながら、平面 \(x=0\) を動くということは, 点 \(Q\) は原点 \(O\) を中心として平面 \(x=0\) で回転しています。 線分 \(OP\) とはいわば円錐の「母線」です。 点 \(Q\) の回転に伴って ...
大小比較と不等式証明【下る方向へ帰納的に考える】【実験と予想】【1999年度 和歌山大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(3^3+4^3+5^3=6^3\) を満たしているので、(1) は (2) の具体例です。 つまり \(n=3\) のときは \(a^n+b^n+c^n=d^n\) だということが分かります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 当然じゃあ \(n=1\) のときは? \(n=2\) のときは? \(n=4\) のときは?\(\cdots\) という興味が湧きますから、調べて ...
サイコロの目によって作られる無限小数【難問】【1990年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 1990年度の東京大学の問題で、この年は東大の歴代前期試験の中でも凶悪な難易度を誇った年として有名です。 この問題も強靭な思考力と粘り強さ、そして考えを的確に表現する力など、かなりの総合力を求められます。 「十分な回数サイコロを投げ、出た目を末尾にどんどん追加して作った数字が、\(\alpha\) 以下となる確率」 と、題意としてはシンプルですが、やってみると " 言葉にできないもどかしさ " を ...
確率についての分野融合問題【条件付き2変数関数との融合問題】【1992年度 大阪大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問は確率の要素はあまりなく、\(P (a,b,c)\) を立式すること自体そんなに難しくありません。 問われているのは、その立式後の「式の扱い」についてです。 (以下ネタバレ注意) + クリック(タップ)して続きを読む ココがポイント \(ab+bc+ca=\frac{1}{2}\{(a+b+c)^2-(a^2+b^2+c^2)\}\) はたびたび登場する式変形なので、常識化しておきたいところです。 そもそもなの ...
数学的帰納法と背理法 第4講【隠れた補題に気が付けるか】【2004年度 名古屋大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数学的帰納法と背理法」シリーズの4弾目です。 このシリーズの一覧はこちら 本問は前回までのシナリオをベースとしながらも、さらに見抜くべきことや示すべきことが多々あります。 「数学的帰納法と背理法3」の記事で、「互いに素であることの翻訳の仕方は色々ある」ということを勉強したと思います。 「2数が互いに素である」ということは「その2数の最大公約数が1」と翻訳することが基本です。 最大公約数を扱うにあたり、大きな武器が ...
直交2接線の交点の軌跡【放物線の準線】【2013年度 山梨大学】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 放物線に対する直交2接線の交点の軌跡を求めるという有名テーマです。 精力的に学習している人は結論を知っているでしょう。 今回はそのような有名テーマを押さえつつ、プラスアルファでの問いかけについても併せて考えてみます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 直交2接線の交点について (1)は有名テーマです。 曲線外の点から引いた接線の立式の仕方は、「接点を設定する」ということから始 ...
カードの番号の積【直接考えるか余事象を考えるかの方針決定】【2009年度 千葉大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 番号付きカードを取り出したり、サイコロを投げたりして番号の和や積を考える問題は沢山あります。 本問は典型的なテーマをベースとしながら、ちょっとしたイレギュラー要素も含んだ問題です。 難易度としては標準だと思いますが、受験生にやらせてみると意外と四苦八苦しています。 この問題を通じて学んでほしいことの1つとして ココがポイント 題意の事象を直接考えるか、余事象を考えるかを判断する。 ということが挙げられます。 この分野では、難易度 ...
数学的帰納法と背理法 第3講【仮定の工夫】【2012年度 和歌山県立医科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数学的帰納法と背理法」シリーズの3弾目です。 このシリーズの一覧はこちら 基本的なシナリオは前回までとおおよそは同じなのですが ココがポイント 互いに素(最大公約数が1)ということをどう翻訳するか が山場となります。 互いに素ということの翻訳の仕方は様々あるということを、本問を通じて学んでほしいと思います。 解答はコチラ
最短経路と直進距離に関する考察【隣り合わないように並べる方法】【2012年度 高知大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) (1),(2)までは典型的な教科書レベルの問題です。 頭を使うのは(3),(4)からで、5m以上の直進があるような最短距離、4m以上の直進があるような最短距離を考えます。 (3)については直進の方向は横方向しかありえませんが、(4)の4mの直進については横方向に加え、縦方向への直進も考えられます。 余事象を使うかどうか 場合分けするとしたら、どのような観点で場合分けするのがスマートか など、色々考え出すと泥沼に嵌まりかねないでし ...
三角比、三角関数の総合問題【幾何的な考察】【関数としての扱い】【2012年度 横浜国立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 式の持つ意味と、図形的な意味をリンクさせる 式の形から次の一手を見出す など、(2)までは「その場力」が必要です。 (3)では三角関数の最小について考えるという基本的な処理も要求されています。 基本的な処理と言いましたが、決して簡単という意味ではありません。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 今回は従属な2変数についてなので、文字消去を狙っていきますが、それだけでは中々うまくいきません。 ...