解答速報

【解答速報】2021年度 東京大学理系第3問【接線と共有点 , 定積分の計算】

問題はこちら(画像をクリックするとPDFファイルで開きます。)

 

急ぎで作成したので、誤りや打ち間違いなどがあるかもしれませんが、ご了承ください。

(誤りが発覚し次第、訂正版をアップしていきます。)

また、時期が来たら、戦略なども含めた完全版を出したいと思います。

【追記】詳細版に差し替えました。

2021年度東大理系の問題はこちら

【解答速報】2021年度 東京大学理系第1問【放物線の通過領域】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   急ぎで作成したので、誤りや打ち間違いなどがあるかもしれませんが、ご了承ください。 (誤りが発覚し次第、訂正版をアップしていきます。) また、時期が来たら、戦略なども含めた完全版を出したいと思います。 【追記】詳細版に差し替えました。 2021年度東大理系の問題はこちら 本問は「通過領域」がテーマになっています。 速報では逆像法(しらみつぶしの考え方)で倒しました。 放物線が通ることができる点の集合が求める領域です。 \((2 \ ...

続きを読む

【解答速報】2021年度 東京大学理系第2問【終点の存在範囲】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   急ぎで作成したので、勘違いや打ち間違い、計算ミスなどがあるかもしれませんが、ご了承ください。 (誤りが発覚し次第、訂正版をアップしていきます。) また、時期が来たら、戦略なども含めた完全版を出したいと思います。 【追記】詳細版に差し替えました。 2021年度東大理系の問題はこちら   (1) の結果が少し疑心暗鬼になるような形でした。 計算ミスを何度も疑いましたが、試験場だと猶更平常心を保つのは難しいかもしれません。 ...

続きを読む

【解答速報】2021年度 東京大学理系第3問【接線と共有点 , 定積分の計算】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   急ぎで作成したので、誤りや打ち間違いなどがあるかもしれませんが、ご了承ください。 (誤りが発覚し次第、訂正版をアップしていきます。) また、時期が来たら、戦略なども含めた完全版を出したいと思います。 【追記】詳細版に差し替えました。 2021年度東大理系の問題はこちら 曲線から接線を引き、接点と異なる共有点を求める定番の問題です。 連立して出てくる 3 次方程式を解くだけですから、(1) は落とせないでしょう。 その際闇雲に因数 ...

続きを読む

【解答速報】2021年度 東京大学理系第4問【二項係数の整数問題】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   急ぎで作成したので、誤りや打ち間違いなどがあるかもしれませんが、ご了承ください。 (誤りが発覚し次第、訂正版をアップしていきます。) また、時期が来たら、戦略なども含めた完全版を出したいと思います。 【追記】詳細版に差し替えました。 なお、2021年2月26日(金)にアップした解答には打ち間違いが多々ありました。 ご迷惑をおかけしました。 さらに誤りなどがございましたら、お問い合わせフォームより報告していただければ幸いです。 2 ...

続きを読む

【解答速報】2021年度 東京大学理系第5問【関数の増減に関する考察】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 関数の増減に関する考察をさせる問題です。 今回は \(\begin{eqnarray} \left\{ \begin{array}{l} x = \theta+\sin{\theta} \\ y=\cos{\theta} \end{array} \right. \end{eqnarray}\) というパラメータ表示された曲線と点 ( \(-\alpha\) ,  \(-3\) ) との距離の2乗として \(f(\theta)\) が与えられて ...

続きを読む

【解答速報】2021年度 東京大学理系第6問【因数分解と恒等式】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   因数分解と恒等式に関する本格的な問題です。 本問は ( 2 次式 ) × ( 2 次式 )  という因数分解ができるように \(a\) を仕組んでください。 という問題でしたが、 「( 1 次式 ) × ( 1 次式 )  という因数分解ができるように」という問題であれば、東大受験生なら一度は経験したことがあると思います。 そういった典型問題をベースに発展させた問題だと思いますが、本問の難しさは発想面というよりも、 何が問われて ...

続きを読む

曲線から接線を引き、接点と異なる共有点を求める定番の問題です。

連立して出てくる 3 次方程式を解くだけですから、(1) は落とせないでしょう。

その際闇雲に因数分解するのではなく、\((x-1)^{2}\) というパーツが出てくることを見越して手際よく処理したいところです。

 

(2) の定積分の計算は展開するか、うまいことやるかでグジグジ悩んでしまった人もいるでしょう。

そういった意味で、見かけ以上に差がつくかもしれません。

計算は中々面倒でした。

難易度は標準です。

解答速報はコチラ

-解答速報
-,

© 2025 MathClinic