微分法

2022/9/7

微分積分に関する正誤判定【1988年度 大阪教育大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 微分積分に関する正誤判定の問題です。 「それらしい」主張に惑わされないこと。 勝手なMy Rule をふりかざさないこと。 ということに対する教訓にしてほしい問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(f'(x)=g'(x)\) とは \(\{f(x)-g(x)\}'=0\) ということです。 これより \(C\) を定数として \(f(x)-g(x)=C\) ということが言えると思います。 ...

2022/8/28

関数決定の難問【1994年度 埼玉大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) 次関数 \(f(x)\) が導関数 \(f'(x)\) で割り切れるときに \(f(x)\)を求めるというシンプルな問題です。 サラリと訊かれているために、急所がどこにあるのかというのを見逃してしまいかねません。 まずは本問がどの分野の問題であるのかをしっかりと見抜きましょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 条件の立式 \(n\) 次式 \(f(x)\) に対して、その導関数 \(f'(x)\) は ...

2022/7/25

一般化 第3講【定積分の扱い】【1968年度 筑波大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習では「一般化」という考え方を自分のモノにします。 問題文で与えられている特殊なシチュエーションを、より一般のシチュエーションに拡張して考えるという手法です。 このシリーズの一覧はコチラ 第3講では、「定積分の扱い」ということをテーマとします。 今回のテーマである一般化以外にも様々な解法が考えられますが、今回のテーマに即した倒し方をぜひ考えてみてほしいと思います。 (以下ネタバレ注意)   + クリック(タップ)して ...

2022/7/25

一般化 第2講【欲しいものを準備する】【2002年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習では「一般化」という考え方を自分のモノにします。 問題文で与えられている特殊なシチュエーションを、より一般のシチュエーションに拡張して考えるという手法です。 このシリーズの一覧はコチラ 第2講では、「欲しいものを準備する」ということをテーマとします。 基本的には第1講で学んだように、形を見て、 「これが欲しい」 という気持ちが湧きあがるかどうかが大切です。 今回は第1講の要素に加えて、少し深みのある問題です。 (以下ネタバレ ...

2022/7/25

一般化 第1講【形から関数を設定する】【2015年度 信州大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習では「一般化」という考え方を自分のモノにします。 問題文で与えられている特殊なシチュエーションを、より一般のシチュエーションに拡張して考えるという手法です。 このシリーズの一覧はコチラ 第1講では、形から関数を設定する力を身につけることを目標とします。 例題の問題は非常にシンプルですが、しっかりと基礎的な部分で差が付きます。 数学の発想の素となる 「こういうことをしてみたい(調べてみたい)」 という素朴な気持ちや感性を鍛えて ...

2022/7/16

長さ一定の放物線の弦の中点【2008年度 東京大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 長さが一定の放物線の弦の中点について考える問題です。 素直に立式していけば特に無理はないのですが、普段から場当たり的に問題を解いていると意外と右往左往しかねません。 合格者にとってのスタンダードとなるレベルといってよいでしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について ひとまずは \(\mathrm{P}\)\((p \ , \ p^{2})\) ,  \(\mathrm{Q}\)\((q ...

2022/4/6

水の問題【2003年度 北海道大学】【2006年度 京都大学】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 通称「水の問題」と呼ばれている問題を扱います。 理解したうえで勘所をもっていないと、右往左往しかねませんし、解答を読んでも 聞けば分かるけど自力でできない ということになりやすい問題です。 少しでも自力で解き進めるためにどういう意識をもって考えていくかということを少しでも持ち帰っていただければと思います。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 体積は時刻に依存する 今回の水の体積 \(V\) は時刻 \(t ...

2022/3/30

2022年度 九州大学 理系第5問【パラメータ表示された曲線】【ハイポサイクロイドの概形と面積】

問題はこちら(画像をクリックするとPDFファイルで開きます。) パラメータ表示された曲線に関する概形と面積について考える定番の話題です。 最終的にこの曲線 \(C\) の概形を図示することになりますが、それに向けてうまく工夫して考えるように誘導がついています。 誘導に乗れるかどうかということは、誘導のありがたみを感じることができるかどうかということです。 \(x\) 軸についての対称性 \(\displaystyle \frac{\pi}{3}\) ごとの回転対称性 という「対称性」を駆使し、省エネしなが ...

2022/3/29

2022年度 九州大学 理系第4問【定積分の定義と性質の証明】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題文が長く、圧倒されそうですが、よく読んで解き進めてみると、内容は 定積分の計算上の定義 定義から言える定積分に関する各種性質 についての理解度を問う標準的な内容です。 どちらかというと、公式の証明に近い内容です。 新たな概念やそれに伴う記号を学習する際、定義やそれにまつわる諸性質についてきちんと理解してきた人は、本問は難なくこなせるでしょうが、逆にそのあたりをなぁなぁに済ませてきてしまった人は強烈なボディーブローのように感じるでしょう。 ...

2022/3/24

2022年度 大阪大学 理系第5問【パラメータ曲線の面積】

問題はこちら(画像をクリックするとPDFファイルで開きます。) パラメータ表示された曲線による面積を考える問題です。 話題としては定番の話題であり、方針面で何をしてよいのかが分からないということがあってはなりません。 今回のパラメータ曲線を図示すると   という概形になります。 見づらくて申し訳ないですが、微妙に膨らんでおり、\(x\) 軸に沿って積分していく場合、くり抜きの作業が発生します。 本問の山場は パラメータ表示された曲線の図示 くり抜き作業を伴う積分計算の工夫 ということになります。 ...

© 2022 MathClinic