抽象的な関数の不等式【2000年度 早稲田大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(f(x)\) が具体的に与えられていない中で、不等式を解かせるという問題です。 根拠として使用してよいことと、マズイことがしっかり分かっているかを試す問題です。 論証という点において重きが置かれていると考えてよく、結論が合っているかどうかだけで判断せず、 言及すべき部分をきちんと言及しているか ということもきちんと確認したいポイントです。 (以下ネタバレ注意) + クリック(タップ)して続きを読む モデルケースで言えば 関数 ...
巡回群【2001年度 京都府立大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 巡回群を背景とした問題で、話の進め方は高校生ではあまり馴染みのないものです。 古典作品の観賞のつもりで楽しむぐらいの気持ちで取り組んでくれればと思います。 感覚的には「そりゃそうだろ」という気持ちになるかもしれませんが、きちんと論証しようとなると難しさを感じるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について とにかく例をつくればいいということで 見つけたもん勝ち です。 複素数には 値とし ...
サイコロの目の約数と論証【2014年度 奈良女子大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) サイコロを投げて出た目の数の約数の番号の付いたカードを裏返していくという問題です。 実は、この設定で昔作問したことがありました。 当時は自分の中で新作問題のつもりで模試用に作問したのですが、後に奈良女子大で出題されていた本問を発見し、 そりゃこのぐらいシンプルな設定であれば被るわな と思ったのを思い出します。 その問題は最後に類題としておいておきますので、よかったらどうぞ。 なお、以下の解説では赤面の状態をR、白面の状態をWと表し、左から番号 ...
存在命題と全称命題【1991年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 有名な難問であり、多くの上級参考書にも収録されています。 色々な上級テーマが含まれており、一つ一つは難関大を目指すうえで糧となるポイントなのですが、逆に 結局何が大事なのか を見失う可能性もあります。 この問題を扱うにあたっては 大枠としてのポイント 存在命題と全称命題の扱い 処理上のポイント \(a\) , \(b\) を互いに素な整数としたときの \(ax+by\) の扱い に絞りたいと思います。 その他、周期性に関する別解なども考えら ...
2本の対称軸をもつグラフ【1999年度 京都府立医科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 対称軸を2本もつグラフについて考察させる問題です。 このような論証に慣れていない受験生も多いことでしょう。 感覚的には「そりゃそうだよな」と思える部分もあります。 主張が割と本格的なものであり、難問の匂いが漂います。 結果論から申し上げれば、解答を聞くと特別なことは特に何もしていないと感じると思います。 人によっては「難問?」と思う人がいても不思議ではありません。 ただ、寂しいかな現実的にはアタフタして終わってしまう人の方が多数でしょう。 差 ...
円周上の3点による直角三角形【ベクトルの論証】【2001年度 大阪市立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 円周上の3点によって直角三角形ができるための必要十分条件を考える論証問題です。 幾何的に言えば \(\triangle{\mathrm{ABC}} が直角三角形 \Leftrightarrow \mathrm{AB} \ , \ \mathrm{BC} \ , \ \mathrm{CA} のどれかが直径\) という同値性は言えるでしょう。 それをもう少し高級に主張しています。 勉強している人からすれば、今回主張されている同値性は 「そりゃそう ...
tan1°は有理数か【sin1°とcos1°についても考える】【2006年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 言わずと知れた伝説の問題です。 出題された当時、大きく話題になりました。 通常シンプルな問題というのは振り切った難問になりがちですが、本問は常識の範囲内の難問で収まっています。 複雑な計算はいらず、ボリュームも膨らまず、洞察力をシンプルに問う良問です。 とは言え、試験場での出来はよろしくなかったようです。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 大枠は背理法 無理数だということは直感的に分かりやすいでしょう。 ...
三角関数の連立方程式【1994年度 東京理科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 見かけ上、従属2変数関数の最大・最小問題に見えます。 実際には、薄皮一枚剥ぐと、「三角関数の連立方程式の運用」という部分がメインの処理内容になります。 路線によってはウルサイことになりかねないので、解法の検討という部分も勉強の内容に含まれるテーマです。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 文字消去困難なときの有力手段 従属2変数関数の最大最小問題に対する最有力候補は 文字消去 です。 ただし今回の場合、裸 ...
場合の数と論証【隣り合う隣り合わない問題】【1998年度 大阪市立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 順列に関する問題で、数が5個しかないので全部は大変にしても部分的にゴリゴリ押し通していけばできなくはありません。 最後にモノを言うのは基礎の運用ですが、 何を求めればよいのか を要約する「咀嚼力」が求められます。 「何を求めればよいか」に辿り着けるからこそ、次の「どう計算すればよいか」に繋がってきます。 場合の数や確率分野である程度のところで頭打ちになっていて、そこからのブレイクスルーを起こすためには、まさにその部分が必要でしょう。 本問は「 ...
2^x=x^2の有理数解【曲線と曲線の位置関係】【2015年度 名古屋大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(2^{x}=x^{2}\) という指数関数に関する方程式の有理数解を求めるという分かりやすい題意です。 その過程で色々教訓になることを含んでいますので、本問を題材としてその教訓について見ていきたいと思います。 丁寧な誘導がついていますから、問題を解くこと自体は無理がないレベルで入試問題としては標準的な問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 微分するだけと言ってしまえばそれまで ...