最大・最小

2022/2/9

仮想難関大(オリジナル予想問題)【座標~放物線の極線~】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回は座標に関する問題です。 円の極線という話題があります。 というように、円の外部の点から引いた2接線の2接点を通る直線を円の極線と言います。 本問はそれを放物線でやろうという問題です。 (以下ネタバレ注意) &nbs ...

2022/1/30

三角形の内角のtanの和【1966年度 金沢大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 非常にシンプルな問題です。 切れ味鋭く捌くこともできますし、腕力で押し切ることもできます。 いずれの路線にせよ、確かな力が必要です。 類題としては などがあります。 原題では誘導設問がついていましたが、それだと面白くなくなってしまうのと、誘導がなくても現実的に処理可能であるということ、試験問題ではなく教材としての提供であることを考え心を鬼にして誘導をカットしました。 ぜひ構想を含めて手を動かしながら考えてみてほしいと思います。 (以下ネタバレ ...

2021/11/26

3変数対称式の最大値【1996年度 大分医科大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 3変数の対称式に関する最大問題で、難問と言ってよいと思います。 今回の3変数は独立3変数なので、例えば、\(y\) と \(z\) を固定し、ひとまず \(x\) の関数として捉える、といったような 予選決勝法 を睨むのが第1感ですが、まともにぶつかると結構厳しいものがあると思います。 そこをどう乗り越えていくかが本問の山場です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 与式を大きくしようという気持ち 与式である \(\d ...

2021/11/23

三角関数の連立方程式【1994年度 東京理科大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 見かけ上、従属2変数関数の最大・最小問題に見えます。 実際には、薄皮一枚剥ぐと、「三角関数の連立方程式の運用」という部分がメインの処理内容になります。 路線によってはウルサイことになりかねないので、解法の検討という部分も勉強の内容に含まれるテーマです。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 文字消去困難なときの有力手段 従属2変数関数の最大最小問題に対する最有力候補は 文字消去 です。 ただし今回の場合、裸 ...

2021/11/2

三角関数の対称式【ノーヒントで解ききる】【2009年度 琉球大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 三角関数に関する対称式の問題です。 方針自体は (1) で立式し、(2) でその立式した式の最大最小を考える というシンプルな流れです。 ある程度の力をもった受験生であれば、腕力でねじ伏せること自体はそこまで難しくはないでしょう。 ただ、糧となる工夫についてはぜひとも身につけたい工夫です。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 状況を図示すると 与えられた状況を図示すると というような図がかけるでしょう。 ...

2021/10/17

円に外接する四角形の面積【図形量の最小】【2015年度 京都大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 円に外接する四角形の面積の最小を考える問題です。 テーマとしては「図形量の最大最小」であり、今回は面積を何かしら数式化し、その関数の最小について捉えることになります。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 条件(a)について 最低2つあるという直角の位置関係によって、今回は という2パターン考えられます。 変数の導入 大枠としては 長さ 角度 について変数導入の余地があります。 特に、角度を導入するとなると ...

2021/9/23

増減表の継ぎはぎ【2007年度 東京理科大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) たかが微分、されど微分。 難関大受験生にとっては方針面で困ることはないでしょうが、試験場だと頭に血がのぼるタイプの問題です。 「いかに解決するか」というよりも、「いかに落ち着いて整理するか」といった工夫面での勝負となるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 和積公式の証明ですが、加法定理を用いてというのは、難関大受験生にとっては余計なお世話でしょう。 「普段から作っとるわい」 という感想がもて ...

2021/9/10

ルートに関する絶対不等式【解法の守備範囲】【2000年度 鳴門教育大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) ルートが絡んだ絶対不等式に関する問題です。 例題と類題を並べてみて、違いが分かるでしょうか。 例題、類題共に様々な解法がありますが、例題で学んだ解法をそのまま類題に適用しようとすると、方針によっては中々大変だったりします。 試験場で自分が選択する解法は一通りだと思いますが、普段の学習において別解を色々考えてみることや、比較検討することは大切なことです。 もちろん、今述べたことは基 ...

2021/11/26

図形版予選決勝法【どちらの文字を先に固定するか】【1997年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) シンプルな問題です。 本問は試験場においては確保したいレベルの問題なのですが、確保するにしても手際の良さがわかれる要素を含んでいます。 本問を通じて持って帰りたい教訓は2点ほどあります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 状況を図示すると 与えられたシチュエーションを図示すると のような状況となります。 多分、この絵をかくときに、 \(P\) をまずかいて、その次に \(Q\) をかく という順番でかくと思います。 ...

2021/8/15

正方形を折ったときの重なりの五角形【2001年度 東京工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 正方形の折り紙を折り曲げたときの重なりの部分が線対称な五角形になるときを考える幾何的な問題です。 このあたりの幾何的な考察はマニュアル的態度でどうこうするというよりは、観察力、洞察力を含めたその場力が必要です。 試験場においてこの問題自体が合否を左右するかというと、そこまで差がつかないと思います。 (確保できれば結構アドバンテージをとれるというレベル) (以下ネタバレ注意)   + クリック(タップ)して下さい 実際に折ってみる 実 ...

© 2024 MathClinic