数学的帰納法

2021/4/29

フィボナッチ構造の数列と複素数平面【2001年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 一見何かあるのだろうかと疑わせるような設定です。 フィボナッチ構造が見える分、何かあるのか?と疑ってしまいますね。 注意 厳密には、\(f_{1}=f_{2}=1 \ , \ f_{n+2}=f_{n+1}+f_{n}\)  と初期条件が 1 ,  1  であるものをフィボナッチ数列と呼びます。 今回は初項が違うので「フィボナッチ構造」という呼び方をすることにします。 東大は一見して、「何かあるのか?」と思わせるような出題がよくあります。 た ...

2021/3/24

2021年度 北海道大学理系第4問【連立漸化式と整数問題】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 連立漸化式をベースとした整数問題であり、ざっと見た感じだと 「証明のベースは漸化式と相性の良い数学的帰納法かな。全貌に関しては手を動かしてみないと分からんな。」 という印象でした。 (1) は計算するだけなので、問題はないでしょう。 (2) ですが、 \(a_{n}\) が常に偶数なのか、\(b_{n}\) が常に偶数なのか、時と場合によって違うのか という疑問のもと、実験して様子を掴んでみようと思いました。 実験の結果、\(a_{n}\) ...

2021/4/21

合成写像と定数関数【膨らむfへの対応】【1997年度 新潟大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   斬新な問題で、一見しただけでは様子がつかめないと思います。 抽象的な関数であり、相当な実力が試されます。 トップレベルの受験生にやらせてみても結構四苦八苦しています。 難問ですが、考え抜いた際の解決に至ったときの感動は大きいと思います。 まずはぜひ考え抜いてみてください。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 例えば、\(f(1)=f(f(12))=f(f(f(23)))=\cdots\) と ...

2021/4/29

全称命題 第3講【整数問題】【一般項か漸化式どちらを扱うか】【1997年度 一橋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   全称命題シリーズ第3講です。 シリーズ一覧はこちら   今回は整数分野の全称命題を扱います。 必要条件を言う部分で整数問題としての処理が求められるでしょう。 その後の十分性の確認では第2講の内容が存分に現れるので、前回の内容の確認もできると思います。 (以下ネタバレ注意)     + クリック(タップ)して続きを読む \(a_{n}=5^{n}+an+b\) とおきます。 全称命題と捉えて \(a_ ...

2021/4/29

全称命題 第2講【一般項と漸化式】【1986年度 東京工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   全称命題シリーズ第2講です。 シリーズ一覧はこちら   全称命題についての対応は第1講で学びました。 全称命題特有の処理を施すわけですが、その後については「分野」ごとの常識力が問われる問題に帰着します。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 全ての自然数 \(n\) について \(a_{n}\) を割り切る素数を探すので、 \(a_{1}\) も割り切る必要があるよね? という屁理屈 ...

2021/4/18

和のa乗とa乗の和【式の特徴を見抜けるか】【2008年度 千葉大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   \(a\) が自然数であれば \((x_{1}+x_{2}+\cdots +x_{n})^{a} \geq x_{1}^{a}+x_{2}^{a}+ \cdots +x_{n}^{a}\) という本問とは逆向きの不等式が成り立つのは自明なのですが、本問はそう容易くはないでしょう。 どこから切り崩そうか、戦略から含めて考える必要があります。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 登場人物の中で唯 ...

2021/4/18

等比数列と等差数列がかみ合った数列【構造を把握する力を試す】【1986年度 一橋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   連続3項間の関係が等比数列、等差数列を繰り返しているという、数列を扱った問題です。 構造的には 前の2項の情報が分かったら、その次が分かる という構造です。 色々な考え方や方針がありますので、まずは自由に考えてみてください。   (以下ネタバレ注意)   + クリック(タップ)して続きを読む 具体的に実験してみると 初期条件が \(a_{1}=1\) ,  \(a_{2}=2\) ですから、\(a_{3}\) ...

2021/4/29

チェビシェフの多項式 第6講【変形チェビシェフの多項式のグラフ】【2004年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第6弾です。 このシリーズのまとめはこちら     背景的知識を抜きにしても本問を解くことはできますので、まずは正攻法で挑んでほしいと思います。   (以下ネタバレ注意)   + クリ ...

2021/4/29

チェビシェフの多項式 第5講【変形チェビシェフの多項式】【2004年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第5弾です。 このシリーズのまとめはこちら   これまでのチェビシェフの多項式 \(T_{n}(x)\) と似ていますが、\(\cos{n\theta}\) ではなく、\(2\cos{n\theta}\) や、\( ...

2021/4/29

チェビシェフの多項式 第3講【第2種チェビシェフの多項式】【1996年度 京都大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第3弾です。 このシリーズのまとめはこちら 前回までに \(\cos{n\theta}=T_{n}(\cos{\theta})\) を満たす多項式 \(T_{n}(x)\) について考えてきました。 じゃあ \(\sin{n ...

© 2024 MathClinic