tanの逆関数【定積分で表された関数の扱い】【2012年度 神戸大学ほか】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回は \(\tan{ \ }\) の逆関数を扱った問題を扱います。 それなりに手垢の付いている話題なので、ちょこちょこ様々な大学で出題されています。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 今回の \(f(x)\) は \(\displaystyle \int_{0}^{x}\displaystyle \frac{1}{1+t^{2}} dt\) は \(\tan{x}\) の逆関数を表します。 その知識の差が出来不出来 ...
ワイエルシュトラスの置換【三角関数のうまい置き換え】【2004年度 山口大学ほか】
今回は「ワイエルシュトラスの置換」と呼ばれる有名な置換を用いた問題を扱います。 ワイエルシュトラスの置換とは ワイエルシュトラスの置換とは ワイエルシュトラスの置換 \(\tan{\displaystyle \frac{\theta}{2}}=t\) とおいたとき、 \(\sin{\theta}=\displaystyle \frac{2t}{1+t^{2}}\) \(\cos{\theta}=\displaystyle \frac{1-t^{2}}{1+t^{2}}\) \( ...
有名曲線【サイクロイド】【パラメーター表示された曲線の接線の扱い】【1988年度 岐阜大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) サイクロイドという有名曲線を扱った問題です。 サイクロイドとは ガムを踏んだタイヤが転がったときの、ガムの軌跡 です。 サイクロイドの中でも一番シンプルな地面を転がるタイプです。 パラメーター表示された曲線の扱いがしっかりしていれば、サイクロイドだということを知らなかったり、見抜けなかったとしても、問題自体は解くことができます。 ひとまずはパラメータ表示された曲線の扱いと言う部分の確認として利用してみてください。 本問は、簡単すぎず、難しすぎ ...
抽象的な関数【条件や定義から結論まで辿り着く】【2000年度 名古屋市立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 抽象的な関数に対する扱いをテーマとした問題です。 話を進めていくうえで、使ってよいことをしっかり整理する力が必要です。 (この問題に限らないですが。) 本問は難易度面でも適度な問題で、抽象的な関数を扱う際の「特有の脳みその使い方」を学べると思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 三角関数の加法定理? 与えられた問題の条件をよく観察してみると \(f(x)=\sin{x}\) , \(g(x)=\ ...
πが無理数であることの証明【定積分の利用】【2003年度 大阪大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 円周率 \(\pi\) は無理数です。 と習ったのは中学生ぐらいでしょうか。 教わったときは「へぇ~、そうなんだ」と流してしまう人がほとんどでしょう。 自分もその一人でしたが、心のどこかで「なんでだろう」という引っかかりをもってはいました。 本問は一応「高校で学習する内容の範囲」で 円周率 \(\pi\) が無理数であるという結論まで辿り着けるように設計されています。 もちろん、厳密性を言い出したらキリがない部分もありますが、なぜ \(\pi ...
eが無理数であることの証明【微分の利用、定積分の利用】【1997年度 大阪大学ほか】
問題はこちら(画像をクリックするとPDFファイルで開きます。) ネイピア数 \(e\) が無理数であることを証明させるという、先人の重みを感じるような問題です。 もちろん、誘導なしで証明しろという問題が入試として出題されたとしたら、大半の人はひとたまりもないでしょう。 今回持ってきた問題は、受験の項目として大事な考え方などを含むような路線の誘導がついているということで勉強になると思います。 それに加えて、ネイピア数 \(e\) の無理数性を証明するという、学問的な事実としての面白さもあると思 ...
有名曲線【アステロイド】【陰関数の微分】【1982年度 岐阜大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問は教科書的な項目で言えば 陰関数の微分に関する力を見る問題 ということができるでしょう。 これから述べる背景的なものや、経験的な部分でアドバンテージをもてることはありますので是非今後の糧にしておきたい問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 接線の式を出すために まずは接線の式を出すために \(\displaystyle \frac{dy}{dx}\) を出す必要があります。 今回は \(y=f ...
方程式の解に関する極限【視覚化による予想】【不定形の形からの判断】【2019年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 方程式の解に関して、様々な考察をさせる良問です。 この年にこの問題を解いたとき、教材として使いたいなと思った記憶があります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 意外と侮れません。 機械的に差を取って微分して \(\cdots\) という態度では、はじき返されるでしょう。 下手に移項せず、\(x^{2n-1}=\cos{x}\) のまま見て、\(y=x^{2n-1}\) , ...
2021年度 北海道大学理系第5問【パラメータ曲線の扱い】
問題はこちら(画像をクリックするとPDFファイルで開きます。) パラメータ表示された曲線に関する基本的な扱いに関する問題です。 やるべきことは一本道であり、迷う余地がありません。 時間を奪われてもいけないレベルの問題であり、本問で躓くということは基本事項の抜けがどこかにあることを示唆するでしょう。 計算量もそこまで多くはありません。 そういった意味で、将来的に本問はどこかの問題集に収録される類の問題だと思います。 問題の難易度はやや易と言いたいところですが、出来具合についてはきっちりと差が付くと思います。 ...
2021年度 北海道大学理系第2問【放物線の2接線の交点と線分比】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 放物線の2接線の交点が絡んだ定番の構図で、今年の旧帝大では名古屋大学もこの構図で出題していました。 大抵面積が絡んだ手垢のついたオチに帰着することが多い中、本問は線分比を計算させてます。 手垢が付きすぎているオチを嫌った(?) 解き始めて最初に思ったことは 「\(a+2\) のまま計算する必要性ってあるのか?」 ということです。 シンプルに \((b \ , \ \displaystyle \frac{b^{2}}{2})\) として計算して ...