チェビシェフの多項式 第7講【ミニマックス原理との関連】【1977年度岐阜大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第7弾です。 【前回までの内容】 今回はミニマックス原理というものが背景にある問題を扱います。 一連の流れが非常に独特です。 誘導があるならともかく、誘導なしの場合、初見で対応するのはかなり難しいと思います。 ...
チェビシェフの多項式 第6講【変形チェビシェフの多項式のグラフ】【2004年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第6弾です。 このシリーズのまとめはこちら 背景的知識を抜きにしても本問を解くことはできますので、まずは正攻法で挑んでほしいと思います。 (以下ネタバレ注意) + クリ ...
チェビシェフの多項式 第5講【変形チェビシェフの多項式】【2004年度 名古屋大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第5弾です。 このシリーズのまとめはこちら これまでのチェビシェフの多項式 \(T_{n}(x)\) と似ていますが、\(\cos{n\theta}\) ではなく、\(2\cos{n\theta}\) や、\( ...
チェビシェフの多項式 第4講【チェビシェフの多項式のグラフの特徴】【1997年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第4弾です。 このシリーズのまとめはこちら 今回のテーマは \(y=T_{n}(x)\) のグラフの特徴です。 本問は前回までと違って \(\cos{n\theta}=T_{n}(\cos{\theta})\) といったよう ...
チェビシェフの多項式 第3講【第2種チェビシェフの多項式】【1996年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第3弾です。 このシリーズのまとめはこちら 前回までに \(\cos{n\theta}=T_{n}(\cos{\theta})\) を満たす多項式 \(T_{n}(x)\) について考えてきました。 じゃあ \(\sin{n ...
チェビシェフの多項式 第2講【チェビシェフの多項式が満たす漸化式】【2015年度 千葉大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第2弾です。 このシリーズのまとめはこちら 今回はチェビシェフの多項式 \(T_{n}(x)\) が満たす漸化式について考えます。 チェビシェフの多項式 \(T_{n}(x)\) は チェビシェフの多項式が満たす漸化式 $$ ...
チェビシェフの多項式 第1講【第1種チェビシェフ多項式】【2008年度 東京慈恵会医科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 このシリーズのまとめはこちら まず、 \(\cos{n\theta}=T_{n}(\cos{\theta})\) を満たす多項式 \(T_{n}(x)\) のことを(第1種)チェビシェフの多項式といいます。 例をあげ ...
数値評価 第4講【e^eの評価】【1992年度 北海道大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数値評価」シリーズの第4弾です。 このシリーズの一覧はこちら 今回は \(e^e\) の評価です。 ノーヒントでの出題であるため、基本的な構想を自分で組み立てる必要があります。 与えられた近似値を単純に使うとなると、手計算できる範囲では $$e^2 \lt e^e \lt e^3$$ とやるのが普通でしょうか。 これを計算しても、 $$7.387524 \lt e^e \lt 20.0792902 ...
数値評価 第3講【e^πの評価】【1999年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数値評価」シリーズの第3弾です。 このシリーズの一覧はこちら 今回は \(e^{\pi}\) の評価です。 前回までと違い、今回はノーヒントでの出題です。 まず、今回の定積分 \(\displaystyle \int_{0}^{\pi} e^{x}\sin^{2} x dx\) は計算可能です。 次数を下げるために半角公式でほぐした後は ポイント 【 \(\displaystyle \int_ ...
数値評価 第2講【ネイピア数eの評価】【2010年度 横浜市立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数値評価」シリーズの第2弾です。 このシリーズの一覧はこちら 前回の第1弾は円周率 \(\pi\) の評価でした。 今回はネイピア数 \(e\) の評価です。 案の定ヒントめいた不等式が誘導としてついています。 前回と違い、今回はちょっとだけオチで一工夫が必要です。 (2) の不等式に \(a=1\) をそのまま代入してもうまくいきません。 今回の問題を通じて教訓として学んでほしいことは 評価に失敗したときのリカ ...