円の垂足曲線【動点の動く軌跡と動いた道のり】【2005年度 岡山大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 曲線上の動点 \(T\) における接線に、定点から下ろした垂線の足の軌跡を「垂足曲線」と言います。 本問は円の垂足曲線を扱った問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 一般的に垂足曲線は \(y=f(x)\) のような表示だと複雑になりますから、パラメータ表示(媒介変数表示)を用いて表現します。 ココがポイント ベクトルをつないでパラメータ表示 サイクロイド系の有名曲線もこのポイントの考え方でパラメ ...
指数型の不定方程式【整数問題の基本的手法の運用】【2010年度 千葉大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) まずは整数問題の有力方針を確認します。 整数問題の有力方針 積の形から約数の拾い上げ 余りで分類 評価する(範囲を絞る) これについては、詳しくは折りたたんでおきますので、基本をしっかりと確認したい方は以下の「+マーク」をクリック(タップ)して読んでください。 + クリック(タップ)して基礎を確認する 積の形から約数の拾い上げ 例題:\(x , y\) は自然数とする。\(xy+2x+3y=6\) ...
2変数の扱い【独立2変数編その2】【1992年度 大阪教育大】【1997年度 岐阜大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 独立2変数の扱いを学ぶ問題です。 本問は勉強している人ほど、沼にハマってしまいかねない問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 勉強している人ほど、本問は「平均値の定理」の形に見えてきます。 そこで飛びついてやってみると、見事に失敗します。 (解答の中の【戦略】で失敗した様子を解説しています。) そこで結構メンタル的に揺さぶられるのですが、そこから何とかリカバリーしたいと ...
2変数の扱い【独立2変数の扱いその1】【1990年度 東京都立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 不等式の証明形式で問いかけられていますが、結局左辺の独立2変数関数の最小値が5であることを言えばいいので、実質的には最大最小問題です。 独立2変数関数の最大最小問題については「予選決勝法」が有力な方針です。 「1つを変数、他を定数」 これが予選決勝法のキーワードです。 step1まず、他のもの(文字や点)を固定し、一つずつ動かしてそのときの最大(最小)を出す。 ここでは \(x , y\) の独立2変数関数の最小 ...
整数部分と小数部分を扱った数列【1981年度 東京工業大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 以後呼びやすさのため、区間 \([0 \ , \ \displaystyle \frac{1}{2})\) を左側区間、\((\displaystyle\frac{1}{2} \ , \ 1)\) を右側区間と呼びます。 \(2^{n-1}\alpha\) ですが、これは初項 \(\alpha\) , 公比 \(2\) の等比数列の一般項です。 どんどん2をかけていく際に、小数部分が左側区間と右側区間を交互に飛び交うイメ ...
縮小関数による漸化式の極限【関数によって定まる数列の極限】【1994年度 筑波大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 縮小関数による漸化式の極限という、難関大ではちょこちょこ出題されるテーマです。 もし、初見であれば、まずは初見でやってみてください。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 縮小関数による漸化式の極限のキーワード ①:\(f'\) の範囲 ( 最大・最小 ) ②:\(f(x)=x\) (不動点の存在) ③:\(a_{n+1}=f(a_{n})\) という漸化式 オチはあらかた決ま ...
eの定義と周辺の関連事項【不定形の形から対応を考える】【1970年度 九州大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 反復試行の確率の形をしているため、下手なことを考えると右往左往しかねない問題です。 シンプルに極限の問題と捉えて考えましょう。 + クリック(タップ)して続きを読む \(\begin{eqnarray} {}_n \mathrm{ C }_r=\frac{ n \cdot ( n - 1 ) \cdots ( n - r + 1 ) }{ r! } \end{eqnarray}\) と、まずは\(\begin{eqnarray}{}_n \m ...
桁数と1の位【仮分数の扱いについて】【1989年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題のインパクトが強いためか、結構有名な問題です。 桁数については、難関大志望者であれば落としたくはないレベルです。 問題は1の位です。 自分がこの問題と向き合ったときの印象は ①:この数字に意味はあるのか? ②:\(3^{21}\) って何だ?どこでどう使う? ということでした。 もし、この数字に意味があり、「この数字じゃなきゃできない」ということであれば、この問題や数字のもつ「特殊性」を見出す必要が出てきます。 逆にこの数字 ...
回転曲面の扱い【回転放物面について】【2020年度 東京慈恵会医科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 回転放物面を扱った問題で、昔より出題は控えめになりましたが、一度は扱っておきたい話題です。 3頂点 \(A , B , C\) が曲面 \(S\) 上にあるという条件は 曲面 \(S\) の方程式を出して、パラメータ表示する と翻訳するのが最もストレートな方針でしょう。 この回転曲面 \(S\) の方程式を出す方法を本問を例にとって手順化すると以下のようになります。 step1\(S\) 上の任意の点\( ...
ベクトルとしての視点or幾何的な視点【分野の選択】【2009年度 大阪大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 図形の問題は「ベクトル」「幾何」「座標」など、様々な分野からのアプローチが考えられます。 難関大志望者は、問題に応じて「どの分野のまな板の上で料理するか」を日頃から意識し、訓練しておくことが大切です。 本問は \(\vec{ a } \cdot \overrightarrow{ OP }=-\vec{ b } \cdot \overrightarrow{ OP }\) という条件をどう料理するかが山場であり、考えがいのあるポイ ...