極限・微分積分系

2021/8/9

特殊な置換を用いた極限【ノーヒントの場合の考察あり】【2016年度 宮城教育大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 三角関数による置換を用いた極限に関する問題です。 例題としてもってきた問題は丁寧な誘導がついているため、誘導に従っていけば完答することも難しくはないはずです。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について \(\theta_{n+1}=-\displaystyle \frac{1}{2} \theta_{n}+\displaystyle \frac{\pi}{2}\) という漸化式を解くわけです。 ...

2021/8/5

形が同じ2数の大小比較【隠れテーマ複数あり】【2009年度 早稲田大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 大小比較という問題ですが、今回与えられている2数は形が同じで、角度が \(x\) と \(y\) となっているか \(2x\) と \(2y\) となっているかの違いしかありません。 形が同じ2数の大小比較ということで、それにどう対応するかという問題です。 ただ、これは表向きの話題であり、この問題を完答するために必要な隠れテーマも複数あります。 最初から見えるテーマもあれば、解き進めていくうちにそのテーマ性を見抜かなければならない場面にぶち当 ...

2021/7/12

従属n変数関数の最小【エントロピー】【2016年度 お茶の水女子大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 一般に、\(x_{1}+x_{2}+\cdots+x_{n}=a\) という従属な関係式をもつ正の \(n\) 変数 \(x_{1}\) ,  \(x_{2}\) ,  \(\cdots\) ,  \(x_{n}\) に対して \(x_{1}\log{x_{1}}+x_{2}\log{x_{2}}+\cdots+x_{n}\log{x_{n}}\) の最小値を考える問題です。 例題では、2変数、3変数という具体的なバージョンで考えてみてくださ ...

2021/7/8

分数関数の極値【安田の定理】【2007年度 青山学院大】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 問題自体は標準レベルの問題で、方針面では躓くことなく進めてほしい問題です。 今回は、分数関数の極値を計算する際の 計算上の工夫について考える というのが趣旨です。 とりあえずは自力で解き進めていってほしいと思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 内接円の半径を導出する際、三角形の面積を絡めて導出するという方法が有名です。 \(\triangle{ABC}=\displaystyle \frac ...

2021/12/3

king property【対称性を利用した置換積分】【2005年度 名古屋大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) king property (キングプロパティー) と呼ばれる置換積分がバックボーンにあります。 ノーヒントだと泡を吹く受験生が多数出てくるでしょう。 ただ、誘導自体にも骨があるため、定積分というものをきちんと理解しているかが問われます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 定積分は「値」 本問を理解するにあたっては、積分計算において「生き残る文字」についてパッと読み取れる力が必要です。 例題 \(\di ...

2023/6/11

双曲線が絡んだ面積【特殊な置換積分】【2011年度 津田塾大学ほか】

【問題1】はこちら(画像をクリックするとPDFファイルで開きます。) 【問題2】はこちら(画像をクリックするとPDFファイルで開きます。) 双曲線が絡んだ面積計算についての問題です。 【問題1】では双曲線関数と呼ばれる関数を利用したパラメータ表示 【問題2】では三角関数を利用したパラメータ表示 ※双曲線関数についての説明は【問題1】の【総括】で説明しています。 を切り口とした誘導が付いています。 細かなことを抜きにして双曲線を \(y=f(x)\) の形で表すと \(x^{2}-y^{2}=1\) の場合 ...

2021/6/21

切ってからガッチャンコ【見づらい立体への対応】【2012年度 大阪大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) まずは問題の舞台設定を把握するところからエネルギーを使います。 ベクトルで表現されていますがこの \(V_{a}\) ,  \(V_{b}\) というのは言ってみれば 斜めに傾いた円柱 です。 この斜めに傾いた円柱同士の共通部分の体積を求めるのが本問の趣旨となります。 目を凝らしても見づらいですから、何とかして工夫することを考えましょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 今回の立体のイメージ 今回の立 ...

2021/6/21

円柱と円柱の共通部分の体積【見づらい立体への対応】【有名問題】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 初見だと何から手を付ければよいか戸惑う人も多いと思います。 以前に 併せてどうぞ 不等式で表された立体という内容を扱いました。 今回はその延長にある話題です。 見えるんだけど見づらい立体 今回、 円柱と円柱の共通部分の体積を求めよ と言われているわけですが、この共通部分と言うのは口で言うのは簡単ですが、目で見るのは中々大変でしょう。 乱暴な言い方にはなりますが、結局体積を求めるには全体像は不要で、 断面積をどうするか ということに集中すればそ ...

2021/6/21

不等式で表された立体の体積【2007年度 北海道大学】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 「不等式で表された立体の体積」というテーマ性のある問題を扱います。 このあたりを場当たり的に何となく理解している状況から、自分が何をしているのかはっきりと説明できる状態に昇華させるためには 方程式や不等式というものの根っこ をおさえる必要があります。 ここではそこをガッチリと掴みながらこのトピックスはもちろん、その他の問題に対しても役に立つ考え方を身につけていってほしいと思います。 (以下ネタバレ注意)   + クリック(タップ)し ...

2021/6/21

有名曲線【リサジュー曲線 (リサージュ 曲線)】【2014年度 同志社大学】

例題はこちら(画像をクリックするとPDFファイルで開きます。) リサジュー曲線と呼ばれる有名曲線について扱った問題です。 リサージュ曲線という呼ばれ方もあり、呼ばれ方に多少揺れがあります。 個人的にはリサージュの方が言いやすいですけど。 リサージュ曲線の定義 媒介変数 \(t\) を用いて リサージュ曲線 $$\begin{eqnarray} \left\{ \begin{array}{l} x  = A \sin{at} \\ y = B \sin{(bt+\delta)} \end{array} \r ...

© 2024 MathClinic