整数系

2021/11/10

有理数で挟まれた有理数の分母【ファレイ数列との絡み】【2014年度 横浜市立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) すごくシンプルな題意ですが、やり始めると目が血走るでしょう。 \(\displaystyle \frac{2013}{2014}=0.99950438\cdots\) \(\displaystyle \frac{2014}{2015}=0.99950372\cdots\) としても「こっからどないすんねん」となるだけだと思います。 解答自体はものすごくアッサリ終わります。 解答のボリュームと難易度のギャップは大きく、内容的には経験などでカバー ...

2021/10/16

素数生成多項式【2002年度 慶応義塾大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問にまつわる話としては、オイラーの見つけた \(f(x)=x^{2}+x+41\) という式が有名です。 \(f(0)=41\) \(f(1)=43\) \(f(2)=47\) \(f(3)=53\) というように、素数を生成し続けます。 ただ、これは永遠に素数を生み出し続けるわけではなく、 \(f(40)=40^{2}+40+41=40 (40+1)+41=41^{2}\) となり、合成数も生まれてしまいます。 ただ、結構な長さで素数を生 ...

2021/10/8

整数問題の観察眼【2011年度 和歌山県立医科大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 不定方程式ですが、絶対値と平方根が入っていて、このあたりの処理の手際の良さが差を生むでしょう。 現役生目線では標準~やや難だと思います。 ただ、医学科受験生にとってはこのあたりの負荷をかけられても耐えられる力がないと苦しいです。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 2乗路線について 絶対値についても、平方根についても 2乗処理 することで絶対値や平方根が外れるという性質をもっています。 ただ、2乗処理に拘 ...

2021/10/2

フェルマー数【各種性質】【2006年度 岐阜大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問のように、\(n\) を \(0\) 以上の整数として、\(a_{n}=2^{2^{n}}+1\) という形で与えられる数を フェルマー数 と言います。 フェルマー数を小さい方から並べると \(a_{0}=2^{1}+1=3\) \(a_{1}=2^{2}+1=5\) \(a_{2}=2^{4}+1=17\) \(a_{3}=2^{8}+1=257\) \(a_{4}=2^{16}+1=65537\) となり、ここまでは全て素数です。 フ ...

2021/9/30

3整数に関する不定方程式【難問】【1990年度 早稲田大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) シンプルな設定でルールはとっかかりやすいのですが、いざやってみるとどこから手を付けたらよいのか途方に暮れる難問です。 実際にこの年の受験生のほとんどが0点だったといういわくつきの問題です。 合否に影響のある問題でないことは確かなのですが、30年経った今でも勉強の糧として使える良問だとも思います。 最初に整数問題の有力方針を確認しておきます。 + クリック(タップ)して基礎を確認する 積の形から約数の拾い上げ 例題:\(x ,  y\) は自然 ...

2022/9/26

マチンの公式とその周辺の等式【1987年度 埼玉大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) マチンの公式とその周辺の等式について触れることができる問題を紹介します。 表向きは \(\tan{ \ }\) が絡む整数問題という顔をしています。 背景的なものを抜きにした整数問題として見てもいい訓練となる問題であり、整数問題の実戦的な問題として丁度よいレベルの良問でしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 図示してみると というように、ひとまず角度 \(\alpha\) ,  \(\beta\) ...

2021/8/27

オーダー【素因数の個数】【2007年度 横浜国立大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 自然数 \(n\) がもつ素因数 \(p\) の個数を \(a\) としたとき、\(a\) を \(n\) の素因数 \(p\) に関するオーダーと言い、 \(a=\mathrm{ord}_{p}n\) と表すことがあります。 この記号自体はあまり馴染みがないと思いますし、事実本問においてもこの記号は用いずに \(f(n)\) を定義することで出題しています。 素因数の個数を「数 ...

2021/8/25

不定方程式【誤差を埋める】【2017年度 北海道大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。)   例題の最終的なオチは与えられた2次式が平方数になるような \(n\) を求めるという問題です。 ノーヒントだと適度に差が付くレベルの問題になるでしょう。 例題は誘導があるため、本気で北大を目指している受験生であれば確保して然るべきレベルとなります。 一通り解いた後、ノーヒントで出題された場合の構想についても触れてみます。 類題は与えられた3次式が立方数になる \(m ...

2021/8/13

メルセンヌ素数【基本的な性質と完全数との関連】【1962年度 京都府立医科大学ほか】

例題1はこちら(画像をクリックするとPDFファイルで開きます。) \(2^{n}-1\) という形の数をメルセンヌ数といい、特に素数となるメルセンヌ数をメルセンヌ素数と言います。 メルセンヌ素数は数学的に興味深い性質を多々もちます。 どこまで深入りするかも問題なのですが、今回は基本的な性質と、有名な完全数との関連にスポットを当ててみます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 直接証明は見通しが悪い \(2^{n}-1\) が素数であるということを数式的に表現するのは難 ...

2021/8/11

a^n-1についての整数問題【難しくアレンジした場合の考察もあり】【2015年度 九州大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(a^{n}-1\) という形を含む整数問題を扱います。 今回は\(2^{n}-1\) というタイプを例題に持ってきました。 \(2^{n}-1\) という形はメルセンヌ素数や完全数などとの絡みもあり、奥が深いですが、それは後々扱おうかなと思います。 本問は適度な誘導がついているため、標準的な難易度に仕上がっていると思います。 (実際には差が付くレベルの問題で、決して簡単ではないとは思いますが) ひとまず、本問を解いたあと、本問をもう少し難 ...

© 2024 MathClinic