幾何・ベクトル系

2021/4/18

複素数平面における幾何的な考察【1次分数変換による実軸の像】【2003年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   複素数平面に関する幾何的な考察問題です。 こういった図形を扱う分野としては 図形を扱う分野 幾何的な分野(三角比や平面図形、初等幾何など) 座標 ベクトル 複素数平面 が挙げられますが、見た目通りの分野の問題として解き進めていくのが最善とは言えないということが多々あります。 ベクトルの問題だけど座標を導入してみたり、座標の問題だけど、幾何的に見たら早かったり \(\cdots\) といった具合です。 この4分野については相互横断 ...

2021/4/18

内積と面積【巡回性をもった形】【ベクトルの式変形の勘所】【1985年度 東北大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   巡回性をもったキレイな設定で、最後の面積を与える式もキレイな形をしています。 パッと見て思わず解いてみたくなる問題です。 結果よりも、本問を通じてベクトルの式変形の勘所や、内積の取り扱い方の勘所を得てほしいと思います。     (以下ネタバレ注意)     + クリック(タップ)して続きを読む (1) は \(a=0\) または \(b=0\) または \(c=0\) のときを考えます。 ...

2021/4/17

回転曲面の扱い【回転放物面について】【2020年度 東京慈恵会医科大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   回転放物面を扱った問題で、昔より出題は控えめになりましたが、一度は扱っておきたい話題です。 3頂点 \(A ,  B ,  C\)  が曲面 \(S\)  上にあるという条件は 曲面 \(S\) の方程式を出して、パラメータ表示する と翻訳するのが最もストレートな方針でしょう。 この回転曲面 \(S\) の方程式を出す方法を本問を例にとって手順化すると以下のようになります。   step1\(S\) 上の任意の点\( ...

2021/4/17

ベクトルとしての視点or幾何的な視点【分野の選択】【2009年度 大阪大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   図形の問題は「ベクトル」「幾何」「座標」など、様々な分野からのアプローチが考えられます。 難関大志望者は、問題に応じて「どの分野のまな板の上で料理するか」を日頃から意識し、訓練しておくことが大切です。 本問は \(\vec{ a } \cdot \overrightarrow{ OP }=-\vec{ b } \cdot \overrightarrow{ OP }\)  という条件をどう料理するかが山場であり、考えがいのあるポイ ...

2021/4/17

球の内部かつ正四面体の表面部分の総面積【題意の言いかえ】【1993年度 大阪大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   幾何についての考察力が問われる問題です。 点 \(A\) , \(B\) を定点としたとき、\(\angle APB \gt 90°\)  を満たす点 \(P\) の集合について考えます。 2次元の話だと線分 \(AB\) を直径とする円の内部であることは大丈夫だと思います。 これを3次元の話に拡張すれば、線分 \(AB\) を直径とする球の内部ということを見抜くこともそこまで難しい話ではないはずです。 (1)では定点 \(A\ ...

2021/4/17

三角比、三角関数の総合問題【幾何的な考察】【関数としての扱い】【2012年度 横浜国立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   式の持つ意味と、図形的な意味をリンクさせる 式の形から次の一手を見出す など、(2)までは「その場力」が必要です。 (3)では三角関数の最小について考えるという基本的な処理も要求されています。 基本的な処理と言いましたが、決して簡単という意味ではありません。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 今回は従属な2変数についてなので、文字消去を狙っていきますが、それだけでは中々うまくいきません。 ...

© 2024 MathClinic