方程式・不等式・関数系

2023/2/13

高次式と余り【2020年度 広島工業大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 類題3はこちら(画像をクリックするとPDFファイルで開きます。) 高次の多項式に関する余りを求める問題で、頻出のトピックスです。 例題からスタートし、徐々に難易度が上がっていきます。 最後の類題3については、難易度は高めです。 この類の問題に一度でも経験があると舐める人もいそうですが、逆にそういう人の足を掬うよう ...

2023/1/11

周期関数【1999年度 山梨大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 周期関数に関する定義と、それにまつわる基本事項、および周期関数か否かの判断について考える問題です。 例題では誘導も兼ねた基本事項の確認がありますが、類題では周期関数かどうかの判断に焦点が当てられており、基本的にはノーヒントでの判断を要求されます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 例題について 例題はこちら(再掲)(画像をクリックするとPD ...

2023/1/6

空間における2円【1999年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間座標における2つの円を扱う問題です。 空間の図形問題は苦手意識をもつ受験生も多く、差がつきやすいトピックスでしょう。 本問は題意の把握、把握後の立式、立式後の処理と各ステージで山場があり、完答するためには確かな力が必要となります。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 題意の把握 一見、 「ん?どういう状況だ?」 と身構える問題です。 条件 (a) を見た印象としては 「原点中心、半径 \(1\) の球 ...

2022/12/6

辺の長さが等差数列をなす三角形【2019年度 東京医科歯科大学】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 訊かれていること自体はそこまで複雑なものではありませんが、頭に血が昇りやすい問題です。 何のプランもなく気の向くままに解き進めていくと、中々うまくいかない歯がゆさを感じると思います。 手元にある条件と、辿り着くべき目的をしっかりと認識し、その間をどのように埋めていくかということを一個ずつ丁寧に詰めていく力が必要です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 手元にある条件 辺の長さ \(a\) ,  \(b\) ,  \( ...

2022/11/26

分数形の桁数計算【2006年度 宮崎大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 分数の形をした整数の桁数計算についての問題です。 機械的な桁数計算しかしていないと、こういった問題がボディーブローのように「ウッ」となるやもしれません。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 路線1:2の累乗で挟む \(p\) を実際に計算するのは実質無理筋ですし、このまま \(\log_{10}p\) を計算するにしても、\(+1\) の部分や \(\displaystyle \frac{ \ }{17} ...

2022/6/20

円を折り返した折り目の存在範囲【1992年度 千葉大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 円を折り返したときの折り目の存在範囲を考える問題です。 シンプルな題意ですが、解き進めていくといくつかの上級テーマが次から次へと襲い掛かってくるため、完答するためにはそれらを払いのけるだけの確固たる力が必要です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 座標の設定 まずは座標の設定です。 自然に設定するとしたら \(\mathrm{A}\)\((-1 \ , \ 0)\) ,  \(\mathrm{B}\)\((1 \ , ...

2022/6/17

絶対値に関する従属2変数関数【2009年度 群馬大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 絶対値に関する従属2変数関数の最大最小問題です。 従属2変数関数については などで色々取り扱ってはいます。 これまで身につけたノウハウがきちんと通用するかを確認するとともに、手薄になりがちな手法も確認する目的として演習していただければと思います。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 従属2変数関数の扱いの基本 従属2変数関数に関しては 文字消去 ということを狙うのがまずは第一です。 2変数関数から文字が消 ...

2022/6/15

累乗根と大小比較【2002年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 5乗根に関する数の大小比較の問題です。 目に付いた特徴によって様々な解法が考えられるあたりが面白いところです。 結論自体に辿り着くことは決して難しくはないので、色々考えてみてほしいと思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 結論の予想 あたりをつけるために、\(n=1\) としてみると \(a=\sqrt[5]{2}-1\) ,  \(b=1\) ,  \(c=\displaystyle \frac{1}{5}\ ...

2022/6/8

2進法の位取り【1未満の数の2進法表示】【2002年度 静岡大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た目に腰がひけてしまうかもしれませんが、根幹が押さえられればあっさりと終わります。 訊かれていることを表面上だけでなく、さらに踏み込んで解釈できればやるべきことが見えてくるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 10進法なら 例えば \(k=1 \ , \ 2 \ , \ 3 \ , \ 4\) に対して \(a_{k}\) が \(0 \ , \ 1 \ , \ , \ 2 \ , \ \cdots 9\) ...

2022/6/5

相反式に関する不等式証明【2000年度 慶應義塾大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(x\) と \(\displaystyle \frac{1}{x}\) の対称式を相反式と言い、相反式に関する不等式証明の問題です。 (1) は特に問題はないでしょうが、(2) が解法によって大変さが変わってきます。 そのまま手なりに押し通すこともできますが、その場合は結構腕力が必要です。 試験場であれば傷だらけになるのを覚悟で茨の道を駆け抜けるのも致し方ないでしょう。 問題を読み、題意を把握した段階で疑問を感じたら、工夫の余地が見えてく ...

© 2025 MathClinic