月別アーカイブ:2021年01月

2021/4/20

確率漸化式【ドロップアウト型~じゃんけん~】【2013年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   じゃんけんを扱った問題です。 今回のゲームがもつ構造を私は 「ドロップアウト構造」 と呼んでいます。 今回だと3人からスタートして 3人 → 3人 → 3人 → \(\cdots\) → 2 人 → 2 人 → \(\cdots\) → 2 人 → \(\cdots\) というようにどんどん脱落していくような構造です。 じゃんけんはドロップアウト構造の典型例です。   実はじゃんけんに限らず、このドロップアウト構造をも ...

2021/4/20

双六を扱った確率【ピッタリあがり】【超えたらあがり】【2004年度 名古屋大学ほか】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   難関大学では、有名なゲームをネタにしたような出題が時折出題されます。 本問は双六をモデル化した問題です。 答えを出す難しさというよりも、的確な表現で紙面上に記述する難しさがあるかもしれません。 表現力も問われてくると思います。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 結局、2 ~ 7 というリーチゾーンの場所にいるならば毎回毎回 確率 \(\displaystyle \frac{1}{6}\) ...

2021/4/20

モニック方程式【最高次が1である高次方程式】【2019年度 東京学芸大学ほか】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   最高次の係数が 1 であるような整数係数 \(n\) 次方程式を \(n\) 次のモニック多項式と呼びます。 入試においては名前まで無理に覚える必要はありませんが、名前がついているものについては 「あ~、モニック方程式の話題ね」 みたいに、シナリオやストーリーを端的にキーワードとして頭に整理しておけるというメリットがあると思います。 モニック方程式は独特な流れとシナリオがあります。 中には知らなきゃ厳しいという内容の式変形を要求 ...

2021/4/20

隣り合わない円順列【極限との総合問題】【2011年度 滋賀医科大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   円順列を題材として、最後は極限の計算技能まで見る欲張りな問題です。(実践演習としては誉め言葉です。) 円順列の基本は 円順列のポイント 誰か一人の目から見る ということです。 公式 \(n\) 人を円形に並べる方法は \((n-1)!\) 通り がありますが、この「\(-1\)」というのはまさに「誰か一人の目から見て残りの \(n-1\) 人がどうなっているかが問題である」という現れです。 式の形に意味付けができれば、覚える(頭 ...

2021/4/29

全称命題 第5講【楕円についての論証】【1990年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   全称命題シリーズ第5講です。 シリーズ一覧はこちら     そもそも、今は「全称命題」というシリーズとしての問題としてこの問題と向き合っているから頭が全称命題モードになっていて、屁理屈を言おうと思えるかもしれません。 しかし実際試験場では何が出題されるか分かりません。 色々な問題に紛れてポンとおいてあったときに、冷静に全称命題だと見抜いて必要条件を出せるのかといった難しさがあると思います。 分野的にも整数や数 ...

2021/4/29

全称命題 第4講【整数問題の基本手法の運用に帰着】【1991年度 金沢大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   全称命題シリーズ第4講です。 シリーズ一覧はこちら 今回は第3講に引き続き整数問題に関する全称命題です。 全称命題に関する基本的な対応については第1講で扱っていますが、今一度ここでも確認します。 step1全称命題だと見抜く 「任意の」「どんな」「全ての」\(\cdots\) という類の言葉は発見のシグナルです。 step2「じゃあ \(\cdots\)」と屁理屈(考えやすい簡単なケース)を言って答えの候補(必要条件)を出す。 ...

2021/4/29

全称命題 第3講【整数問題】【一般項か漸化式どちらを扱うか】【1997年度 一橋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   全称命題シリーズ第3講です。 シリーズ一覧はこちら   今回は整数分野の全称命題を扱います。 必要条件を言う部分で整数問題としての処理が求められるでしょう。 その後の十分性の確認では第2講の内容が存分に現れるので、前回の内容の確認もできると思います。 (以下ネタバレ注意)     + クリック(タップ)して続きを読む \(a_{n}=5^{n}+an+b\) とおきます。 全称命題と捉えて \(a_ ...

2021/4/29

全称命題 第2講【一般項と漸化式】【1986年度 東京工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   全称命題シリーズ第2講です。 シリーズ一覧はこちら   全称命題についての対応は第1講で学びました。 全称命題特有の処理を施すわけですが、その後については「分野」ごとの常識力が問われる問題に帰着します。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 全ての自然数 \(n\) について \(a_{n}\) を割り切る素数を探すので、 \(a_{1}\) も割り切る必要があるよね? という屁理屈 ...

2021/4/29

全称命題 第1講【恒等式として等号が成立するための条件】【1990年度 東京工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   「全称命題」というテーマ性のある話題を扱います。 これは分野は関係なく、「考え方」に難しさがあり、独特な議論の進め方をします。 対応を知らないと、白紙になってしまったり、見当はずれなことを場当たり的に書いて終了してしまいかねません。 全称命題だと見抜く「眼」と、見抜いた後の「対応」の両輪をきちんと揃えておき、ライバルに差をつけましょう。 シリーズ一覧はこちら 今回は恒等式となるための条件を考えるという問題です。 見た目が仰々しく ...

2021/4/18

選べる漸化式【分析力や構想力を試す良問】【1996年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   機械的な態度になりがちな漸化式の問題の中で、分析力や構想力を要する良問です。 個性の強さゆえ、一度ネタバレすると新鮮味は薄れます。 初見の方はぜひ限界まで考え抜いてほしいと思います。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む \(a_{1}+a_{2}+\cdots+a_{n}=S_{n}\) とおきます。 \(S_{n}=(a_{n}+\displaystyle \frac{1}{4})^{2} ...

© 2025 MathClinic