一般化 第3講【定積分の扱い】【1968年度 筑波大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習では「一般化」という考え方を自分のモノにします。 問題文で与えられている特殊なシチュエーションを、より一般のシチュエーションに拡張して考えるという手法です。 このシリーズの一覧はコチラ 第3講では、「定積分の扱い」ということをテーマとします。 今回のテーマである一般化以外にも様々な解法が考えられますが、今回のテーマに即した倒し方をぜひ考えてみてほしいと思います。 (以下ネタバレ注意) + クリック(タップ)して ...
一般化 第2講【欲しいものを準備する】【2002年度 名古屋大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習では「一般化」という考え方を自分のモノにします。 問題文で与えられている特殊なシチュエーションを、より一般のシチュエーションに拡張して考えるという手法です。 このシリーズの一覧はコチラ 第2講では、「欲しいものを準備する」ということをテーマとします。 基本的には第1講で学んだように、形を見て、 「これが欲しい」 という気持ちが湧きあがるかどうかが大切です。 今回は第1講の要素に加えて、少し深みのある問題です。 (以下ネタバレ ...
一般化 第1講【形から関数を設定する】【2015年度 信州大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回のテーマ別演習では「一般化」という考え方を自分のモノにします。 問題文で与えられている特殊なシチュエーションを、より一般のシチュエーションに拡張して考えるという手法です。 このシリーズの一覧はコチラ 第1講では、形から関数を設定する力を身につけることを目標とします。 例題の問題は非常にシンプルですが、しっかりと基礎的な部分で差が付きます。 数学の発想の素となる 「こういうことをしてみたい(調べてみたい)」 という素朴な気持ちや感性を鍛えて ...
2進法の位取り【1未満の数の2進法表示】【2002年度 静岡大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た目に腰がひけてしまうかもしれませんが、根幹が押さえられればあっさりと終わります。 訊かれていることを表面上だけでなく、さらに踏み込んで解釈できればやるべきことが見えてくるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 10進法なら 例えば \(k=1 \ , \ 2 \ , \ 3 \ , \ 4\) に対して \(a_{k}\) が \(0 \ , \ 1 \ , \ , \ 2 \ , \ \cdots 9\) ...
2022年度 京都大学 理系第1問【対数の数値評価】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 年度問題として、見た目のインパクトが大きい問題です。 対数は道具として使うことが多く、 この対数がどれぐらいの大きさなんだろう という対数そのものに対する興味がないと、問題意識がもてないかもしれません。 そういった意味で京大はこういうボディーブローのように受験生が「ウッ」となるところをつついてくるのがうまいですね。 例えば \(\sqrt{2022}\) がどれぐらいの大きさか と言われたときに何をすればよいのかで迷う人はいないでしょう。 そ ...
2021年度 名古屋大学理系第2問【対数の大小比較】
問題はこちら(画像をクリックするとPDFファイルで開きます。) (1) , (2) は教科書、傍用問題集レベルの基本的な問題であり、第1問同様に確保したいところです。 遥か昔に名古屋大は 1975年度名古屋大学 \(\log_{2} 3\) と \(\log_{3} 4\) の大小を比較せよ。 という問題を出題していたことがありました。 それに比べれば、今回はヒントとなる \(\displaystyle \frac{3}{2}\) という数字も与えてくれています。 (3) のオチも ( ...
仮想難関大(オリジナル予想問題)【積分とe^eについての数値評価】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で最後の力試しがしたい」 という方はぜひご活用ください。 今回の問題は「数値評価」です。 見た目のインパクト重視で作りましたので、誤差に関しては結構ガバガバだと思います。 とは言え、あまりにもラフな評価で倒せるわけではないと思うので、十分試験として機能はする ...
数値評価 第4講【e^eの評価】【1992年度 北海道大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数値評価」シリーズの第4弾です。 このシリーズの一覧はこちら 今回は \(e^e\) の評価です。 ノーヒントでの出題であるため、基本的な構想を自分で組み立てる必要があります。 与えられた近似値を単純に使うとなると、手計算できる範囲では $$e^2 \lt e^e \lt e^3$$ とやるのが普通でしょうか。 これを計算しても、 $$7.387524 \lt e^e \lt 20.0792902 ...
数値評価 第3講【e^πの評価】【1999年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数値評価」シリーズの第3弾です。 このシリーズの一覧はこちら 今回は \(e^{\pi}\) の評価です。 前回までと違い、今回はノーヒントでの出題です。 まず、今回の定積分 \(\displaystyle \int_{0}^{\pi} e^{x}\sin^{2} x dx\) は計算可能です。 次数を下げるために半角公式でほぐした後は ポイント 【 \(\displaystyle \int_ ...
数値評価 第2講【ネイピア数eの評価】【2010年度 横浜市立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数値評価」シリーズの第2弾です。 このシリーズの一覧はこちら 前回の第1弾は円周率 \(\pi\) の評価でした。 今回はネイピア数 \(e\) の評価です。 案の定ヒントめいた不等式が誘導としてついています。 前回と違い、今回はちょっとだけオチで一工夫が必要です。 (2) の不等式に \(a=1\) をそのまま代入してもうまくいきません。 今回の問題を通じて教訓として学んでほしいことは 評価に失敗したときのリカ ...