漸化式

2021/9/20

完全順列 攪乱順列 モンモール数【2013年度 成城大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 完全順列、攪乱順列、モンモール数などと呼ばれる話題の問題で、1994年度慶応大、2004年度東工大など類題も多く見られます。 本問のように \(5\) 人といったような具体的な場合であれば、樹形図をかき、腕力で押し切ることも可能でしょう。 (ただ、工夫しないとそれなりの大木になるでしょう。) ただ、ここでは一般的な \(n\) のときでも話が通じる態度である漸化式を立てる方針で考えてみます。 完全順列に対する漸化式の立て方は独特なものがありま ...

2021/9/17

漸化式と群数列の融合【2019年度 名古屋市立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 得体のしれない漸化式による数列に関して色々考察させる問題です。 本問はその場で考えたり判断する力(その場力)と、それに基づいて立式したものを処理する基礎の運用力のバランスが個人的に素晴らしいと思います。 この問題そのものが今後まんま出題されることを期待はしてはいけませんが、この問題を通じて得られるものが今後の糧となることは十分にあり、演習問題として良問です。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 得体のしれ ...

2021/9/7

ベータ関数【6分の1公式などの拡張】【2015年度 横浜市立大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 通称 \(\displaystyle \frac{1}{6}\) 公式や \(\displaystyle \frac{1}{12}\) 公式と呼ばれる積分公式の一般化であるオイラーの第一種積分、ベータ関数がバックボーンにある問題を扱います。 これらの名前は入試的には無理に覚えなくてもいいですが、シナリオについては難関大受験生としては一度は経験しておきたいです。 入試段階では「こんな話題だな」という頭のラベル付けとして覚えるぐらいの感覚で十分で ...

2021/8/19

対称性のある連立漸化式【2008年度 信州大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 3種の数列 \(\{a_{n}\}\) ,  \(\{b_{n}\}\) ,  \(\{c_{n}\}\)  についての連立漸化式の扱いを考えます。 特に今回は対称性のある連立漸化式について見ていきます。 連立漸化式については、テーマ別演習「漸化式基本パターン」 の第8講で扱っていますが、今回は「3種の数列」「対称性」という実戦的な話題にスポットを当て、実践演習という位置づけで扱います。 なお、本当は誘導の設問がついていましたが、今回は誘導が ...

2021/8/9

特殊な置換を用いた極限【ノーヒントの場合の考察あり】【2016年度 宮城教育大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 三角関数による置換を用いた極限に関する問題です。 例題としてもってきた問題は丁寧な誘導がついているため、誘導に従っていけば完答することも難しくはないはずです。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について \(\theta_{n+1}=-\displaystyle \frac{1}{2} \theta_{n}+\displaystyle \frac{\pi}{2}\) という漸化式を解くわけです。 ...

2021/7/22

分数関数の合成とフィボナッチ数列【2015年度 藤田保健衛生大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\displaystyle \frac{1}{1+x}\) という分数関数を合成していく関数列について考える問題です。 1次分数関数を合成した結果も1次分数関数になるわけですが、本問はその中でも \(f_{1}=f_{2}=1\) \(f_{n+2}=f_{n+1}+f_{n}\) というフィボナッチ数列が登場するという点で面白さがあります。 本当は (2) の設問をカットしようかとも思いましたが、ひとまずは原題に近い形にしておきました。 ...

2021/4/29

4項間漸化式【変形のココロの理解度を試す】【2005年度 東京医科歯科大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問は漸化式の処理を真正面から問いかけています。 漸化式の処理の基本については テーマ別演習:漸化式の解法基本パターン で扱っています。 本問はそういった基本をおさえた上で、それを活用できるかという要素が強かったため、「実戦演習」の方で扱います。 (1) について 基本の3項間漸化式です。 これができなかった人は こちらをCHECK を確認してください。 (2) について 「やり方だけ覚えている」という人を跳ね返す問題です。 目的意識をもって ...

2021/4/25

漸化式の解法基本パターン 第8講【2種類の連立漸化式への対応】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   このシリーズの一覧はこちら   第8講では「連立漸化式」を扱います。 連立漸化式の代表的な解法としては2つあります。 連立漸化式の代表的方針 1文字消去 上手い倍率を見つけて辺々操作 それぞれについて見てみます。 1文字消去路線について 今回の (1) を例にとってみます。 消しやすい第2式に注目すれば、\(a_{n}=b_{n+1}-b_{n}\) と見ることができます。 第1式に代入するために番号を 1 つ上げれば ...

2021/4/25

漸化式の解法基本パターン 第7講【隣接3項間漸化式への対応】

問題はこちら(画像をクリックするとPDFファイルで開きます。) このシリーズの一覧はこちら   第7講では3項間漸化式を扱います。 3項間漸化式 $$a_{n+2}+pa_{n+1}+qa_{n}=0$$ この3項間漸化式の狙い筋は 狙い筋 $$a_{n+2}-\alpha a_{n+1}=\beta(a_{n+1}-\alpha a_{n})$$ という形に変形することで、等比数列の形として処理することです。 つまり、 \(a_{n+2}-\alpha a_{n+1}=\beta(a_{n+1 ...

2021/4/22

漸化式の解法基本パターン 第6講【2項間漸化式:変数倍型】

問題はこちら(画像をクリックするとPDFファイルで開きます。) このシリーズの一覧はこちら   第6講では「変数倍」型を扱います。 変数倍型 $$a_{n+1}=f(n)a_{n}+A$$ 基本的に\(a_{n+1}=pa_{n}+\cdots\) という「定数倍」であれば、多少のイレギュラーこそあれど、等比数列としての処理に帰着することになります。 今回のように「変数倍」になってくると、形一つで対応が変わってきます。 このあたりを体系的にまとめるのは難しいでしょう。 (1) ,  (2)  は ...

© 2025 MathClinic