2022年度 大阪大学 理系第4問【縮小関数による漸化式】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 縮小関数によって定まる漸化式によって定まる数列の極限を考える問題で、難関大を目指すにあたっては経験を積んでおきたい話題です。 本問は今回のテーマを学ぶにあたって、標準的な内容であり、今後このテーマの例題として様々な教材で扱われるでしょう。 キーワード ①:\(f'\) の範囲 ( 最大・最小 ) ②:\(f(x)=x\) (不動点の存在) ③:\(a_{n+1}=f(a_{n})\) という漸化式 オチはあらかた決まっていて、③の漸化式と② ...
2022年度 北海道大学 理系第2問【平面ベクトルと漸化式】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 与えられたベクトルに関する漸化式により、点列 \(\{\mathrm{P}_{n}\}\) , \(\{\mathrm{Q}_{n}\}\) が定まっていきます。 この \(\mathrm{P}_{n}\) の座標を \((x_{n} \ , \ y_{n})\) としたときの \(x_{n}\) や \(y_{n}\) が求められています。 図形的にアプローチする 式をゴリゴリ処理していく という2路線が考えられますが、図形的なイメージで ...
2022年度 東北大学 理系第5問【空間における直線のベクトル方程式と漸化式】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題文が長く、何を言っているのかを把握するのに集中する必要があります。 まじめな受験生ほど、律儀に絵を描こうとして、この題意の把握に時間をとられてしまう恐れはあります。 正確な図を描こうという心意気は大切ですが、 立式するために必要な見やすい図 が描ければ事足ります。 というように、 \(l\) , \(l'\) がそれぞれ \(\vec{a}\) , \(\vec{b}\) を方向ベクトルにもつ。 交互に垂線を下ろしあう という状況をし ...
2022年度 京都大学 理系第6問【漸化式と周期性】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 2種類の数列 \(\{x_{n}\}\) , \(\{y_{n}\}\) に対して、その差を取った数列 \(\{x_{n}-y_{n}\}\) の一般項 \(x_{n}-y_{n}\) を求めるという問題です。 \(\{y_{n}\}\) の方は具体的に与えられているので、そこまで恐れる必要はないでしょうが、問題は数列 \(\{x_{n}\}\) の漸化式の方です。 構造上 \(x_{n}\) が分かって、次の \(x_{n+1}\) が求 ...
2022年度 東京大学理系第2問【漸化式と整数問題】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 漸化式によって定まる数列の整数的特徴を論じる問題です。 一般項を相手にはできませんから、漸化式を漸化式のまま扱うという力が必要です。 随所随所で 問題文で訊かれていること以上のことを見出す ということが必要になってきます。 実験し、手を動かして突破口を見出すことになるのですが、それでも最短距離でスムーズにいける人は割合的には少ないと思います。 難易度的にはやや難です。 試験場ではムキにならず、深追いしない方が得策でしょう。 解答はコチラ
2変数の漸化式【1996年度 北海道大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) , \(m\) という2変数が絡む漸化式の問題です。 試験場だと「ウッ」となるやもしれません。 ふたを開ければ、難関大受験生にとっては基本の処理となりますが、 ふたがそれなりに重い ふたが開けられても、その後の処理は差がつく という要素をもっており、完答するためには「確かな力」が必要となります。 試験場で見慣れない未知の問題に出会ったら、という耐性をつけるという想定で臨んでみてください。 (以下ネタバレ注意) + クリック(タ ...
自然数の和分割【2002年度 大阪教育大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 自然数を和として分割する方法について考える問題です。 シンプルでキレイな題意は、アレンジしようにもそれ以上手を加える余地があまりなく、それ以降出題を考えても二番煎じになってしまうためかえって出題を敬遠されるかもしれません。 ただ、シンプルで分かりやすく、難易度が適度におさまり、かつ手垢の付いていない良問というのはそう簡単には生み出せるものではありません。 本問は上述の良問要素を含んでいると思います。 (もちろん見る人が見たら手垢はついていると ...
関数列の一般項【定積分による漸化式】【1991年度 名古屋大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 定積分を用いた漸化式によって定まる関数列の一般項を求めるという趣旨の問題です。 例題は数Ⅲ、類題はⅠAⅡBまでの範囲内での問題です。 数列の漸化式についてはパターン性が濃く、機械的な態度で処理するわけですが、本問の場合 構造を見抜く目 定積分の運用力 などが必要です。 難関大志望者に演習としてやらせてみると、確かな力がある受験生はきっちりと確保していますし、その後それぞれの志望校 ...
2変数の確率【シンプルな難問】【1998年度 九州芸術工科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 題意はメチャクチャシンプルなのですが、やってみると結構手こずります。 本問は元々誘導があったのですが、今回は方針決定から組み立てる力を磨くことを目的としたいと思い、心を鬼にして誘導をカットしました。 悩んだ挙句に解ききった快感は大きいでしょうし、たとえ途中でギブアップしてしまってもそこまでに頭を沸騰させていればそれは無駄にはなりません。 ぜひ考えて見てほしいと思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む ...
フェルマー数【各種性質】【2006年度 岐阜大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問のように、\(n\) を \(0\) 以上の整数として、\(a_{n}=2^{2^{n}}+1\) という形で与えられる数を フェルマー数 と言います。 フェルマー数を小さい方から並べると \(a_{0}=2^{1}+1=3\) \(a_{1}=2^{2}+1=5\) \(a_{2}=2^{4}+1=17\) \(a_{3}=2^{8}+1=257\) \(a_{4}=2^{16}+1=65537\) となり、ここまでは全て素数です。 フ ...