高次方程式と因数定理【2005年度 早稲田大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 高次多項式に関する求値問題で、難易度としては基礎寄りの基本問題です。 因数定理の運用に関する問題としては適度な難易度であり、ポイントが絞られていることもあり、例題として扱いたい要素があります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(Q(1)=Q(2)=\cdots=Q(2006)=0\) という強力な条件は、因数定理をインスピレーションさせるでしょう。 \(2006\) 次式 \(Q( ...
4次方程式の解法【オイラーの手法】【2008年度 横浜市立大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 元々4次方程式の解法についてはフェラーリの方法が有名ですが、今回はオイラーさんにスポットが当たっています。 4次方程式の解法について 「オイラーさんがこういう方法を考えたんだけど、一緒に解いてみよう」 というN◎K的な問題です。 逆に言えば、言われたことをやっていればできてしまうとも言えます。 根号が次から次へと飛び交うため、整理力がモノを言います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について ...
未知数の個数と条件式の個数【2004年度 公立はこだて未来大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 未知数が3個に対して、条件式が2つですから、一見すると条件式の個数が足りず焦るかもしれません。 本問を解ききれるかどうかは、観察力などに加え、「諦めない心と粘り強さ」という精神論的な力が必要かもしれません。 そういった意味でキッチリと差が付くでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 実験してみる \(x=1\) , \(y=1\) , \(z=1\) というのはすぐに見つかると思います。 それ ...
3次方程式の解の巡回【2009年度 神戸大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) \(x^{3}-3x+1=0\) という3次方程式の解が \(x^{2}-2\) という2次関数を用いてグルグル巡回するという面白い話題です。 丁寧な誘導があるため、本問を解くこと自体は基礎力があればそこまで難儀ではありませんが、 「こんなカラクリどうやって思いついたのかしら」 という疑問に少しだけお応えするために、本問のカラクリや背景的なものに少しフォーカスしてみたいと思います。 ひとまずは本問を解いてみてください。 (以下ネタバレ注意) ...
実数解の個数【色々見えるn次方程式】【1994年度 名古屋大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 方程式の実数解の個数を数えるというテーマとしてはよくある話題です。 ただなまじ色々見える分、方針決定が難しく、押し通すにしてもそれなりに腕力が必要なので、各方針の引き際を見極めるのが難しいと思います。 試験場ではこういった 色々見えるものがあり、うまくやろうと試みたが結局うまくいかず、愚直にゴリゴリ進めるのが最善だった という類の問題が厄介です。 特に本問は「作為めいた匂いのする設定」が見た目から漂ってきます。 (以下ネタバレ注意) &nbs ...
3次方程式の解の極限【2009年度 兵庫県立大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 3次方程式の解の極限について扱う問題ですが、口で言う以上の様々なテーマや教訓を含んでいます。 極限についてや、方程式の扱いについての実戦問題として得るものが多い良問だと思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について これについては基本的な問題で、 ①:単調性と連続性 ②:代入して正となる値の存在 ③:代入して負となる値 の3点を確認します。 ②と③については今回は極限について考えれば十分 ...
n次方程式の解の限界【掛谷の定理】【1975年度早稲田大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 類題3はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) 次方程式の解の限界を係数を用いて考えるという古典的な話題です。 係数を見ただけで、その \(n\) 次方程式の解の限界が判断できるとなれば、それは結構有用性がありますね。 まずは2次方程式という具体的な場合についてを例題と ...
不動点を利用した合成方程式【f(f(x))=x の解】【2011年度 日本女子大ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 合成関数が絡んだ高次方程式を解く問題です。 誘導があるため、難易度としては標準と言ってもよいでしょう。 場当たり的に雰囲気で解けてしまったという人も多いと思いますが、見通しを持ちながら解き進めることができるかどうかについてをチェックしてほしいと思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 不動点について \(f(x)=x\) を満たすような \(x\) を不動点と言います。 \(f(x)=x\) という ...
相反方程式【解き方の確認と周辺知識の足固め】【2011年度 名城大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 係数が左右対称となっているような方程式を 相反(そうはん)方程式 と言います。 ノーヒントかつ初見だとアタフタしますが、大抵誘導がついています。 とは言え仮にノーヒントであったとしてもある程度は対応できるように準備はしておきましょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 偶数次相反方程式の特徴 今回の例題をもとにしますが、偶数次の相反方程式の特効薬は 偶数次の相反方程式の特効薬 真ん中で割る という態度に ...
カルダノの公式【汚く見える数の正体が整数】【3次方程式の解の公式】【2009年度 東北大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 一見複雑に見える数が、実はシンプルな数でした、ということを示す問題で、背景には3次方程式の解の公式(カルダノの公式)があります。 本問以外にも類題は多数あり、経験済みという方も多いかもしれません。 大抵誘導が付いていますから、その誘導の流れをきちんと汲み取ることができれば、背景を知らなくとも問題を解くこと自体はそこまで難しくないと思います。 (1) においては \(x^3\) を計算することになると思 ...