3乗和と素数の累乗【1984年度 東京工業大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「素数の整数乗になる」という日本語で訊かれていますが、 \(p\) を素数、\(n\) を整数として \(a^{3}+b^{3}=p^{n}\) を満たす正の整数 \(a\) , \(b\) を全て求めよ。 という問題です。 明らかに誘導めいた (1) という設問はありますが、その誘導のありがたみを感じるためには薄皮一枚剥ぐ必要があります。 これが薄皮に感じるか、分厚い皮に感じるかという問題でしょう。 (以下ネタバレ注意) + クリック(タ ...
3文字の基本対称式と最大公約数【2022年度 東京工業大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 3文字の基本対称式に関する最大公約数について考える問題で、見た目のインパクトが大きい問題です。 2文字の基本対称式についての 有名事実 正の整数 \(p\) , \(q\) に対して \(p+q\) , \(pq\) が互いに素 \(\Leftrightarrow\) \(p\) , \(q\) が互いに素 という事実の、3文字への拡張ということになります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む ...
素数に関する不定方程式【2019年度 同志社大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 不定方程式(文字の数に対して式の数が少ない方程式)の中でも少々対応力が問われる問題です。 誘導の活用力も問われます。 試験場のつもりで取り組んでみると、いい模擬訓練になるでしょう。 恐らく出題者側はある程度のレールを敷き、誘導を付けて無理のない範囲で仕立てようとしたのでしょうが、多分出題者側が期待しているように受験生は中々動いてくれないのが現状だと思います。 用いている基本事項は全て整数問題においては常套手段の一つなのですが、「100m先から ...
格子点同士を結ぶ2線分のなす角度【2004年度 一橋大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 格子点同士を結ぶ2つの線分のなす角について考察する問題です。 例題は実戦要素が強く、 2直線のなす角の扱い 整数問題の捌き方 が問われてきます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 座標平面上での角度の処理 \(\angle{\mathrm{BAC}}\) という座標平面上で角度を扱おうと思うと 座標における角度の扱い ベクトルの内積を用いて \(\cos{ \ }\) として処理する 傾きと \(\tan{ \ }\ ...
素数が無限に存在することの証明【1973年度 大阪歯科大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 素数が無限に存在することは紀元前から分かっていたことです。 ユークリッドの有名な数学書である原論での証明が有名で、歴史的内容を含む問題であり、思考力を試すというよりは、教養的側面の強い話題です。 現在、様々な証明法が知れ渡っていますが、ここではユークリッドの考えを基にした背理法による証明と、2006年に発表されたフィリップ・サイダック氏による証明を紹介します。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 背理法による証明 以下 ...
単位分数の和【エジプト式分数】【2006年度 富山大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 自然数の逆数からなる有理数を「単位分数」といい、異なる単位分数の和として表現した分数を「エジプト(式)分数」と言います。 本問は、 2項からなるエジプト分数の最大値が \(\displaystyle \frac{5}{6}\) 3項からなるエジプト分数の最大値が\(\displaystyle \frac{41}{42}\) ということを証明せよという問題です。 表向きは入試標準的な整数問題ですが、古くから様々なことが研究されており、奥が深い話 ...
三角形と整数問題【1990年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 三角形の長さに関する整数問題です。 図形ならではの隠れた条件などに目を光らせないと、手が止まってしまったり、手際が悪くなってしまったりします。 京大の「らしさ」が感じられる良問です。 スムーズに式変形ができれば、問題ないですが、手が止まってしまったときのリカバリーについても触れてあります。 結論から言えば、セオリーに基づいて式変形すればできなくはないので、諦めずに粘り勝ちを狙っていくことも可能です。 (以下ネタバレ注意) + ク ...
階乗に関する整数問題【2015年度 鳥取大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 階乗に関する整数問題ということで、最後のオチの問題は考えてみたくなる香ばしさがあります。 誘導付きなので、誘導をうまく活用できるかという要素の方が大きくなっています。 思考力(試行力)を養うためには誘導はない方がいいのですが、試験問題としてはこのぐらいでも機能すると思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(5!+4!+3!=120+24+6=150\) これを落とすことは許され ...
ピタゴラス数とペル方程式【2011年度 三重大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) ピタゴラス数に関する問題で、印象に残るインパクトをもった問題です。 強力な誘導がありますから、思考力や発想力というよりは、問題の主張を把握し、誘導の意味を見出す読解力寄りの力が求められます。 なので、問題を解くこと自体はそこまで難問ではないでしょう。 今回は、\(x\) , \(y\) が連続2整数となるようなピタゴラス数についてスポットが当たっていますが、これについてのちょっとした深掘りも考えてみましょう。 (以下ネタバレ注意) &nbs ...
約数と倍数に関する整数問題【1992年度 一橋大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 約数や倍数という整数問題の基本的な概念について扱う問題なのですが、決して簡単ではないでしょう。 整数問題らしく様々なものの見方に伴う別解があり、一つ一つが本問だけに限らず他の問題への糧となる内容を含んでいます。 聞けば簡単、解くのは別問題というタイプで、きっちりと差が付く問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(n^{2}\) と \(2n+1\) が互いに素とは、 \(n^{ ...