3次方程式の解の巡回【2009年度 神戸大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) \(x^{3}-3x+1=0\) という3次方程式の解が \(x^{2}-2\) という2次関数を用いてグルグル巡回するという面白い話題です。 丁寧な誘導があるため、本問を解くこと自体は基礎力があればそこまで難儀ではありませんが、 「こんなカラクリどうやって思いついたのかしら」 という疑問に少しだけお応えするために、本問のカラクリや背景的なものに少しフォーカスしてみたいと思います。 ひとまずは本問を解いてみてください。 (以下ネタバレ注意) ...
対称的な陰関数【1975年度 帯広畜産大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数の見た目をしており、確かに前半は1の3乗根の基本性質の運用がメインの話題です。 (1) の結論を得て、(2) に取り掛かる際に「ムムっ」となる可能性があります。 範囲的にはグレーゾーンかもしれませんが、余裕があればこういう問題も考えて見るのも一興です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(|z|=1\) という条件から、\(|z|^{2}=1\) ですから、 \(z\bar{z ...
放物線の平行移動による通過領域【2018年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 東大お得意の通過領域を絡めた問題で、「動くもの」をどのように数式として立式するかという運用力が求められます。 領域を出すだけでも一苦労なのですが、その後の面積計算においても工夫なしでやろうと思うと少し溜息が出ます。 本問は、上記の運用力に加え、構造を的確にとらえて処理する力を鍛えられると思います。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 構造の把握 いきなりで分からなかった場合、例えば \(k=1\) などと ...
離散量の不動点定理【1973年度 名古屋大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 離散量の不動点定理と呼ばれる有名な話題を扱います。 計算自体はほとんどありません。 構造を見抜く目と、それを記述しまとめる力が求められます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 題意を噛み砕く まず、問題文で何を言っているのかということをしっかりと把握します。 \(f\) という関数(写像)は「対応」という言葉で読み替えるとシックリくると思います。 イメージ的には というように、 \(1\) を \(1\) から \( ...
多項式の剰余問題【重解型】【1997年度 文教大】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 多項式を多項式で割ったときの余りについて考える問題で、話題としてはよくあるものです。 その中でも「重解型」という差が付くトピックスを取り上げます。 単元学習の段階ではラスボス的な位置づけの話題だと思います。 ただ、演習段階においては 経験で差が付く標準問題 という位置づけです。 序盤ラスボスと見せかけて、後々モブだったという意味で言えばドラクエⅥで言うムドーのようなものでしょう。 重解型は細かく言えば様々な解法がありますが、ここではよくある方 ...
ラグランジュの三角恒等式【ド・モアブルの定理の応用】【1971年度 富山大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 三角関数の和の導出について考える問題です。 少し古い問題ですが、今回の話題を扱うにあたりよい例題ということでもってきました。 (以下ネタバレ注意) + クリック(タップ)して続きを読む ラグランジュの三角恒等式について ラグランジュの三角恒等式 \(\displaystyle \sum_{k=0}^{n}\cos{k\theta}=\displaystyle \frac{\cos{\displaystyle \frac{n\th ...
求められない角度の評価【2008年度 九州大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 求められない角度に対してどのようにアプローチするかを考える問題を扱います。 基本的には 等式を諦めて不等式を繋ぐ という態度で臨みます。 今回扱う角度は具体的に口で言うことはできません。 「大体このぐらいの角度である」 というある意味ラフな気持ちが必要です。 (以下ネタバレ注意) + クリック(タッ ...
複素数平面と観察眼【式の観察】【2000年度 東京工業大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数平面を題材とした不等式証明の問題です。 なまじ色々見える分、方針面で右往左往するかもしれません。 実際自分が解いたときもウロチョロしました。 1の累乗根が見える形だったり、「何かあるのか」と思わせる舞台設定です。 本問を完答するためには 計算力 立てた方針で解ききれるかを判断する検証力 トラブルを打開するための観察力 が必要だと思います。 逆に本問はこれらの力を鍛える題材として使える問題だと思います。 もちろん、それらの力をつけるために ...
通過領域【式で追うか目で追うか】【2004年度 青山学院大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 2つの動点が関わる軌跡や通過領域について捉える問題です。 難易度についてははっきりと差が付くと思います。 何が難しいの?と思う人もいるでしょうし、ドツボに嵌まって身動きが取れなくなる人もいると思います。 本問を選定した理由を述べます。 通過領域というのは本来、目で追っていくことが難しいから式に教えてもらおうという態度でいくことが多いです。 そのあたりのよくある通過領域については で、取り扱っています。 最初にいってしまうと、この問題は式だけで ...
sinの和とcosの積【和積公式の運用】【2008年度 首都大学東京】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「おっ?」と思うような見た目と構成をしていますが、中身は三角関数の諸公式の運用を試す基本的な問題です。 特に (2) は割と有名な等式です。 一般論に拡張できるような雰囲気を醸し出しておきながら、最後に裏切られてしまうのは何とも言えません。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(x+y=\pi\) という従属2変数に関する扱いであり、 基本 1文字消去 を狙っていくのが素直です。 (2 ...