Kenichiro Iwata

【モットー】:凡人の数学 ☛大学入試の数学は「正しく」勉強すれば報われることを伝えたいと思います。 【生業】:大学受験指導 【経歴】:名古屋大学理学部数理学科卒 【目標】:サイト名に込めました。(現在目標達成に向けて日々邁進)

2021/3/16

2021年度 東北大学理系第2問【面積比】【2変数の扱い】【整数問題】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   三角形の面積比という話題から始まり、その面積比を与える2変数関数のとり得る値を考え、最後は整数問題に帰着させるという欲張りな問題構成になっています。 各分野に関する総合的な力が必要で、幾何の話題→関数の話題→整数の話題、と目線の移動も激しいです。 (1) を落とすと、それに連動して (2) ,  (3) も失ってしまう問題なので、(1) は慎重に確保したいところです。   のような角度 \(\theta\) を共有する ...

2021/3/16

2021年度 東北大学理系第1問【2次方程式の解の配置問題】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 聞かれ方としては \(a\) ,  \(b\) を実数とする。 方程式 \(ax^{2}+bx+1=0\) が正の実数解をもたないような点 \(a \ , \ b\) の領域を図示せよ。 という聞かれ方の方が多いかもしれません。 俗にいう「解の配置問題」というやつで、2次方程式の場合 解の配置問題 軸 判別式 代入 (通称ジハダ) (これができなきゃハジダ) に目を向けて処理する定番の問題です。 「こうなっててくれ~」という願いを込めて図をか ...

2021/3/15

2021年度 九州大学理系【総評と感想】

今年の九州大理系数学を解いての感想です。 難易度について 標準問題を下地としながらも、各分野の総合的な問題に仕上げていたり、逆に見慣れない設定で対応力を試すような問題もあり、完答するためには、確固たる力が必要な問題たちだったと思います。 昨年からの大きな難易度変化はないと感じましたが、絶対的な難易度は高い水準で保っているといった感じでしょうか。 少し前までは九州大学の問題は標準的なイメージがありましたが、あまりそういった「傾向と対策」に偏りすぎないように、きちんと地に足つけて勉強してきてくださいという警鐘 ...

2021/3/15

2021年度 九州大学理系第5問【二項係数が素数となる条件】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た感じ本格的な匂いを感じました。 主張がシンプルで高級そうなオチで、今回のセットの中では目を引く問題でした。 少し愚痴ると、 \(n\) は 4 以上の自然数とする。 \(2 \leq k \leq n-2\) を満たす自然数 \(k\) に対して \({}_n \mathrm{ C }_k \gt n\) を示せ。 ぐらいまで書いておいてほしいなと思います。 自然数 \(k\) が \(2 \leq k \leq n-2\) として存在す ...

2021/3/14

2021年度 九州大学理系第4問【『平均値の性質』と複素数平面における存在命題の論証】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   平均値の定理 \(a\) ,  \(b\)  を \(a \lt b\) を満たす実数として、\(a \leq x \leq b\) で \(f(x)\) が微分可能としたとき \(\displaystyle \frac{f(b)-f(a)}{b-a}=f'(c)\) を満たす \(c\) が \(a \lt c \lt b\) に存在する という平均値の定理の形を彷彿とさせます。 定義域が複素数であると複素関数になってしまい、 ...

2021/3/13

2021年度 九州大学理系第3問【絶対不等式の考え方】【x軸回転体の体積】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   テーマとしては (1) が絶対不等式の考え方、(2) が x 軸回転体の体積ということですが、実質は (1) が山場です。 区間 \(I\) において \(f(x) \gt c\)  ( \(c\) は定数 )  が常に成立するとは 区間 \(I\) における最小値を \(m\) として \(m \gt c\) が成立する。 ということが言えます。 その区間における最小値(一番雑魚)が \(c\) に勝てるのであれば、その他の連 ...

2021/3/12

2021年度 九州大学理系第2問【2次方程式の虚数解についての複素数平面上での考察】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 2次方程式の虚数解をもとに複素数平面上で様々なことを考察する問題です。 (1) で困る人はいないでしょうから、実質は (2) からの勝負ということになると思います。 実際この問題を見たときの私のメモです。     大体見た感じでこのあたりまで読み解いて、あとは詰めていくか、といった感じで解き進めました。 詰めの作業のときに、最後の (3) で出した \(\tan{\theta}\) の値が (1) の \(\theta\) ...

2021/3/11

2021年度 九州大学理系第1問【球と平面の位置関係と交円】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   色々な方針が考えられます。 空間座標の問題においてはベクトルから攻めるのが常套手段ではあります。 その理由を説明するためには「方程式とは何ぞや」ということについて述べなければなりません。   「方程式とは何ぞや」ということをすごくざっくり言えば 「この=を満たす○○集まれ~」 です。 1次方程式 例:\(3x-4=5\) →意味:\(3x-4=5\) を満たす \(x\) 集まれ! →集まった結果(解):\(x=3\) ...

2021/3/10

2021年度 大阪大学理系【総評と感想】

今年の大阪大理系数学を解いての感想です。 難易度について 内容自体は標準的な内容が多いように思いましたが、完答するためには何かしらのワンパンチが必要な問題が並んでいたように思います。 昨年に比べて難易度は保っていたように思いますので、大きな難易度変化はないといってよいと思います。   2021年度 大阪大学理系 各解説記事   第1問 問題はこちら(画像をクリックするとPDFファイルで開きます。) 最終的に従属2変数関数の最小値を求める問題に帰着します。 今回は \(b=\displa ...

2021/3/10

2021年度 大阪大学理系第5問【複接線が引けるための必要十分条件】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   (1) は \(f(x)=x-\tan{x}\)  ( \(-\displaystyle \frac{\pi}{2} \lt x \lt \displaystyle \frac{\pi}{2}\) )  と設定し、微分すれば \(f(x)\) が単調減少であることが即座に分かります。 あとは任意の実数 \(a\) に対して \(y=f(x)\) のグラフと \(y=a\) が 1 点のみで共有点をもつことが言えればよく、この \ ...

© 2025 MathClinic