Kenichiro Iwata

【モットー】:凡人の数学 ☛大学入試の数学は「正しく」勉強すれば報われることを伝えたいと思います。 【生業】:大学受験指導 【経歴】:名古屋大学理学部数理学科卒 【目標】:サイト名に込めました。(現在目標達成に向けて日々邁進)

2021/4/22

シグマ計算基本方針 第5講【二項係数の2乗和】【経験値が必要】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 初見かつノーヒントであれば厳しいと思います。 まずはノーヒントで粘れるだけ粘ってみてください。 どうにも埒があかないな、となったら誘導付きの問題も用意しましたので、そちらで再チャレンジしてみてください。   + クリック(タップ)して誘導付きの問題でチャレンジする 誘導付きはこちら(画像をクリックするとPDFファイルで開きます。) \((1+x)^{2n}\) という式を考えるという部分が見えるだけでも、気持ち的には楽でしょう。 と ...

2022/1/30

三角関数の積の最大値【従属3変数】【1999年度 京都大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) シンプルな問題ですが、多くの解法が考えられ、それぞれ色々な教訓を含んでいるので、一粒で何度もおいしい問題です。 どういう視点からこの問題を捉えるかによって、自然に見える見え方や考え方が変わってきます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 見た目通りの問題と捉えると この問題を見た目通り 「従属な3変数関数の最大問題」 と捉えれば、例えばまずは \(\gamma\) を消去して、\(\alpha\) ,  ...

2021/4/29

カタラン数が素数となるための条件【2021年度 東京工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 今回設定されている \(a_{n}=\displaystyle \frac {{}_{2n}\mathrm{C}_n}{n+1}\)  はカタラン数と呼ばれる有名な形の数であり、場合の数や確率の分野でよく登場する数です。 本問は「カタラン数だから何かあるのか?」と変に身構えてしまいかねませんが、「二項係数についての整数問題」と割り切って考えた方がいいでしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) ...

2021/7/11

カタラン数【最短経路の応用問題】【2008年度 九州大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) (1) ,  (2) について 最短経路の問題として (1) ,  (2)  についてはきっちりと確保したいレベルの基本問題です。 (3) について 反面、(3) については「カタラン数」という話題にスポットが当たっており、 経験していなければ、その場での発想は不可能 と言ってもよいと思います。 カタラン数の話題を無視して、「純粋に腕力で押し切る」ということもできますので、試験場では腕力で愚直に計算することもできますが、ここではカタラン数とい ...

2021/3/30

仮想難関大(オリジナル予想問題)【フィボナッチ数列を係数にもつ2次方程式の解】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 仮想難関大シリーズということで、東大、京大をはじめとする旧帝大、東工大、国公立大学医学部医学科などの難関国公立大を想定したオリジナルの自作問題です。 「手垢の付いていない問題で力試しがしたい」 という方はぜひご活用ください。 今回はフィボナッチ数列をテーマにした問題です。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 元々は カッシーニ・シムソンの定理 \(f_{1}=f_{2}=1\) という条件の下で \(f_ ...

2021/4/29

フィボナッチ構造の数列と複素数平面【2001年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 一見何かあるのだろうかと疑わせるような設定です。 フィボナッチ構造が見える分、何かあるのか?と疑ってしまいますね。 注意 厳密には、\(f_{1}=f_{2}=1 \ , \ f_{n+2}=f_{n+1}+f_{n}\)  と初期条件が 1 ,  1  であるものをフィボナッチ数列と呼びます。 今回は初項が違うので「フィボナッチ構造」という呼び方をすることにします。 東大は一見して、「何かあるのか?」と思わせるような出題がよくあります。 た ...

2021/4/29

複素数平面における対称移動【実部虚部を持ち出すか否か】【2018年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 2018年度東京大学理類の第5問で、複素数平面に関する対称移動という話題からスタートし、そこから肉付けがしてあります。 今でも記憶にあるのは、この年に参加した研究会の分析会議で「本問がこの年における最難問である」という意見が多数を占めていたということです。 確かに決して簡単ではないと思いますが、 通常東大受験生が学習しているであろう範囲内の学習で、十分対応可能である内容であるということ 突拍子もない発想を要求されるわけでもないこと 上手い解法 ...

2021/4/22

シグマ計算基本方針 第4講【応用実践】【2005年度 大分大学ほか】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 【1】(以下ネタバレ注意) + クリック(タップ)して続きを読む 連続自然数の積のシグマ計算は工夫の余地があります。 バラバラに展開してしまった人は「ジェイソン」と呼ばせていただきます。 バラバラにして\(\displaystyle \sum_{k=1}^n k\) ,  \(\displaystyle \sum_{k=1}^n k^{2}\) ,  \(\cdots\)  などを使って計算していくのは流石にシンドイと思います。 和の中抜けを ...

2021/4/22

シグマ計算基本方針 第3講【二項定理の活用】【2007年度 大阪府立大学ほか】

問題はこちら(画像をクリックするとPDFファイルで開きます。) テーマ別演習「シグマ計算基本方針」第3講です。 このシリーズの一覧はこちら シグマ計算の基本方針は次の3つです。 シグマ計算基本方針 公式利用とその延長 差分解からの和の中抜け 二項定理の活用 今回の第3講では 二項定理の活用 を扱います。 二項定理を活用してシグマ計算する場面は特徴的であり、 二項定理を使うシグマ計算 コンビネーションのシグマ というのが見落としてはならない特徴であり、キーワードです。 ただ、単純に代入すればいいだけでなく、 ...

2021/3/25

2021年度 北海道大学理系【総評と感想】

今年の北大理系数学を解いての感想です。 難易度について 北大は昔から標準的な問題をベースとした適度な良問を出題している大学です。 今年についてもその特徴は顕在で、すべての問題が決して無理のない標準的な問題のセットだったと思います。 今年のセットは計算量も多くなく、昨年度よりやや易化したと言えます。 2021年度 北海道大学理系 各解説記事   第1問 問題はこちら(画像をクリックするとPDFファイルで開きます。) 平面ベクトルの問題としての出題ですが、適宜幾何的な見方をすることで、処理を手際よく ...

© 2025 MathClinic