ウィルティンガーの不等式【1963年度 慶應義塾大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) ウィルティンガーの不等式と呼ばれる ウィルティンガーの不等式 \(f(x)\) が周期 \(2\pi\) をもち、\(\displaystyle \int_{0}^{2\pi} f(x) dx=0\) を満たすならば \(\displaystyle \int_{0}^{2\pi} \{f'(x)\}^{2} dx \geq \displaystyle \int_{0}^{2\pi} \{f(x)\}^{2} dx\) が成り立つ。 という、解 ...
長さ一定の放物線の弦の中点【2008年度 東京大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 長さが一定の放物線の弦の中点について考える問題です。 素直に立式していけば特に無理はないのですが、普段から場当たり的に問題を解いていると意外と右往左往しかねません。 合格者にとってのスタンダードとなるレベルといってよいでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について ひとまずは \(\mathrm{P}\)\((p \ , \ p^{2})\) , \(\mathrm{Q}\)\((q ...
極限の有限確定条件【1986年度 お茶の水女子大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 分数形の関数の極限が有限確定値に収束するための条件について考える問題です。 話題としては定番の話題に入ると言ってよく、試験場で初見というのは難関大受験生としては準備不足と言わざるを得ないでしょう。 出典をあげればキリがありません。 もっと手ごろな「The例題」という問題もゴロゴロありますが、今回の例題は極限の計算力を手ごろに試せる実戦的な良問としました。 今回は例題のような定番のタイプに加え、少し味付けの違うタイプの問題も2題準備してあります ...
面積評価の工夫【k乗数の相加平均】【1990年度 お茶の水女子大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(1^{k}\) から \(n^{k}\) までの \(k\) 乗数の相加平均に関する不等式証明の問題です。 見慣れない記号に圧倒されるかもしれませんが、紐解いていけば、これまでの学習が活かせるような形が現れるはずで、それを見落とさずに捌いていきましょう。 とは言え、最後まで完答するためには 機械的なマニュアルではない、観察力 を要する部分もあるため、試験場で確保できると破壊力がある難易度です。 (以下ネタバレ注意) + クリ ...
ニュートン法【接線のx切片によって定まる数列】【1995年度 名古屋大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) ニュートン法と呼ばれる「よりよい近似解」を求めるアルゴリズムについて考える問題です。 問題を解くこと自体は誘導がついているため、きちんとした基礎学力があれば無理なく進められるようにはなっています。 グラフ的に考えると、最後の極限の値は予測できますし、今回の数列 \(\{x_{n}\}\) がどのような数列であるかも理解できるでしょう。 ただ、グラフ的に考えるのはあくまでイメージで ...
和から一般項【1977年度 徳島大学ほか】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 和の情報から一般項の情報に辿り着く 「和から一般項」 という話題です。 本問は1960年に当時高校生であった鹿野健氏が新作し、雑誌のコンテストで入賞したことで、後に様々な大学で出題されるようになったとのことです。 見た目の簡潔さ、教育的な内容、適度な難易度、といったバランスがよく、演習題材としてはとてもよい題材です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 和から一般項 \(S_{n}=a_ ...
絶対値付きの2項間漸化式【1986年度 九州大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 受験生にやらせてみると 「絶対値さえなければ」 と、慌てふためく人が多い問題です。 機械的な解法暗記に頼ってきた人や、Mr.丸暗記さんは残念ながら試験場で本問と出会った場合、退場を余儀なくされるでしょう。 当たり前のことが当たり前にできる ということが前提の上で、ちょっとしたイレギュラーに対応するある種の「逞しさ」を要求する問題だと言えましょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 得体 ...
相加平均と相乗平均の差【1997年度 滋賀大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) \(x \gt 0\) , \(y \gt 0\) のとき相加平均と相乗平均の関係 \(\displaystyle \frac{x+y}{2} \geq \sqrt{xy}\) は基本中の基本ですが、この相加平均と相乗平均の誤差について考えていく問題です。 結論が示されている証明形式であるため、問題を解くこと自体は標準的な難易度です。 まずは例題でウォーミングアップをして、同じテーマを扱ってはいますがより手ごわい類題にもチャレンジしてみてく ...
sin∞タイプの極限【1995年度 埼玉大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(\sin{\infty}\) という一見収束しないように見える形の極限値を求める問題です。 結果的にこの極限が収束するというのは、感覚的に不思議な感じがします。 本問は適切な誘導があるために、完答するのもそこまで無理な話ではありません。 しかし、ノーヒントだと多くの人がアタフタして終わりということになりかねないでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について ひとまず、目がチカチカする ...
確率と区分求積法【2019年度 兵庫県立大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題1はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 確率の問題をベースに、極限計算の運用を見る問題です。 ひとまずは確率そのものを計算できるかどうかという部分が問われます。 ひとたび確率が計算出来たら、今度は数学Ⅲの極限の話題です。 一問で様々な基本を試す標準的な問題で、難関大受験生にとってはこういうレベルの問題をキッチリと確保したいところです。 (以下ネタバレ注 ...