空間座標における回転体【ベビースターラーメンの回転体】【2003年度 東北大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間座標における回転体は出題されれば差が付くトピックスです。 難関大を目指すにあたってはしっかりと準備しておきたい話題ですので、しっかりとマスターして周りの受験生に差をつけましょう。 一般に 空間座標における回転体の扱い方 全体像を捨てろ 切ってから回す(先に回すな) 回転の中心からの最大距離・最小距離を捉える がポイントになる点です。 全体像については「仮に分かったとしても、それが体積を求めることに役に立つのか?」ということを ...
桁数問題【イレギュラーへの対応】【1989年度 金沢大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 桁数に関する問題です。まずは教科書レベルの基本的な桁数問題を通じて、常用対数の運用の仕方をきちんと学習する必要があります。 その上で本問はちょっとしたイレギュラーにも対応する力が問われる実践的な問題です。 もう少し基礎的な例題で確認したい方は以下の「+マーク」をクリック(タップ)して確認してください。 + クリック(タップ)して基礎を確認する 例えば、 \(3^{2021}\) の桁数を求めよ。 ただし、\(\lo ...
有名曲線【カージオイド】【複素数平面からの問いかけ】【2005年度 早稲田大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数平面の顔をしていますが、一皮むけば、有名曲線が現れます。 もちろん、その有名曲線特有の知識がなければ解けないとかはないのでご安心ください。 少しぼやくと 今回 \(|z|=1\) を動くとしか書いていません。 \(z\) が半径 1 の円をグルグル動けば、\(w\) も際限なく動き、点 \(w\) の描く曲線の長さは特定されません。 今回は非常に好意的に解釈し、 「重なっていない部分を曲線の長さとみなして」 考えました。 ...
オイラーの無限積 ヴィエトの公式【2005年度 名古屋大学ほか】
問題はこちら(画像をクリックするとPDFファイルで開きます。) オイラーの無限積やヴィエトの公式などを背景とした問題を集中的に扱って、一度この話題を整理したいと思います。 問題を解けるようにするということはもちろんですが、一つの事実に対して様々なアプローチがあり、それを糧とするような学習をしていただければと思います。 丁寧な誘導がありますから、何をすればよいのか皆目見当もつかない、といったことにはならないとは思います。 難関大学を目指すにあたっては一度は経験しておきたい話題であ ...
和のa乗とa乗の和【式の特徴を見抜けるか】【2008年度 千葉大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) \(a\) が自然数であれば \((x_{1}+x_{2}+\cdots +x_{n})^{a} \geq x_{1}^{a}+x_{2}^{a}+ \cdots +x_{n}^{a}\) という本問とは逆向きの不等式が成り立つのは自明なのですが、本問はそう容易くはないでしょう。 どこから切り崩そうか、戦略から含めて考える必要があります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 登場人物の中で唯 ...