答案の趣旨を読み取る【他人の答案を説明する力】【2013年度 佐賀大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 他人の答案の趣旨を説明するという、多くの人にとっては目新しく感じる問いかけでしょう。 本問は2013年度佐賀大学の文化教育学部の問題ですが、教員としての説明力や様々な解答を理解する力が問われており、問題を解くのとは別の部分の脳みそを使います。 「知識・技能」だけでなく、「思考力・判断力・表現力」 を謳い文句とする新課程、共通テストが好みそうな出題の仕方です。 個人的に新課程、共通テストに対して言いたいことは多々ありますが、ここだと話が逸れるの ...
連分数展開とユークリッドの互除法【1993年度 早稲田大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 不定方程式を解く際に、特殊解を見出して一般解に繋げる定番の話題ですが、連分数展開から特殊解に迫るという問題です。 特殊解を見出す手法として有名なのはユークリッドの互除法のプロセスに現れる 余りを余りで割り続ける という手法ですが、今回の連分数展開と互除法のプロセスが手を繋いでいるという部分まで含めて見ていきます。 ユークリッドの互除法そのものについては でしっかりと確認しておくとスムーズです。 (以下ネタバレ注意) + クリック ...
ババ抜きの確率【1995年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題をよく見てみると、「ババ抜き」をモデルにした問題だと分かると思います。 2人でやるババ抜きはあまり面白くありませんが、数式的には、京大の入試問題として成立するぐらいの問題にはなります。 本問で言う 0 がババに相当します。 この状態でババをもっている \(A\) からスタートしたら、確実に(自動的に)手が進み \(\{0 \ , \ 1 \ , \ 2 \ \cdots \ , \ n\}\) , \(\{1 \ , \ 2 \ , \ ...
形が同じ2数の大小比較【隠れテーマ複数あり】【2009年度 早稲田大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 大小比較という問題ですが、今回与えられている2数は形が同じで、角度が \(x\) と \(y\) となっているか \(2x\) と \(2y\) となっているかの違いしかありません。 形が同じ2数の大小比較ということで、それにどう対応するかという問題です。 ただ、これは表向きの話題であり、この問題を完答するために必要な隠れテーマも複数あります。 最初から見えるテーマもあれば、解き進めていくうちにそのテーマ性を見抜かなければならない場面にぶち当 ...
取り除かれるコイン【問題の整理と分類】【2002年度 一橋大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) シンプルなルールで題意も把握しやすいですが、やってみると「うるさい」問題です。 MathClinic を活用して勉強していただいている人は「あれ?これってもしかして \(\cdots\)」とピンとくるものがあると思います。 (というかピンとくるものがあってほしいという願望と期待) (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について まずはこのゲームの要領を肌で感じてくださいという実験的な設問です。 \( ...
いびつなサイコロ【不変量に注目】【2008年度 東京工業大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 各面が等確率で出ないサイコロを考えるという設定で、この設定にバリバリ慣れ親しんでいますという人は多くはないでしょう。 昔名古屋大学で直方体のサイコロに関する論証問題がありましたが、本問は直方体とも限らないということで攻め崩す急所をどのように見出していくかが問われます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(k=1 \ , \ 2 \ , \ \cdots \ , \ 6\) として、\ ...
大小関係の決まった順列【取り出した番号が単調増加となる確率】【2015年度 滋賀大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 単元学習や定期考査段階では上級テーマに位置づけられる問題です。 ただ、入試の実戦段階では定番のテーマであり、対応できてほしいタイプの話題です。 (1) , (2) は基本で、 (3) , (4) が今回のテーマである「大小関係の決まった順列」を扱った設問です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 取り方の総数は \(9^{4}\) 通りです。 このうち、4回とも異なる数字を取るという ...
不定方程式【和と積が等しい整数の組】【2012年度 東京理科大学ほか】
問題1はこちら(画像をクリックするとPDFファイルで開きます。) 問題2はこちら(画像をクリックするとPDFファイルで開きます。) 整数問題については 整数問題の有力方針 積の形から約数の拾い上げ 余りで分類 評価する(範囲を絞る) を意識するのが基本です。 その中で、 評価する(範囲を絞る) という項目を学ぶ例題として今回の話題である 「和と積が等しい整数の組」 を考える問題がよく使われます。 よくあるのは次のような「3変数」の場合です。 3変数の例題 例題:\(xyz=x+y+z\) を満たす自然数 ...