年別アーカイブ:2020年

2021/4/18

素数の各桁の数を係数にもつ2次方程式【素数という条件の活かし方】【1977年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   問題の主張が高級です。 シンプルな主張ですが、難問の匂いが漂ってきます。 数学が好きな人は気を付けてください。 試験場だと深入りし、下手にムキになろうものなら冷静さを失って時間バランスが崩壊しかねません。 時間を気にせず粘り強く考えるという観点から見れば、本問は良問です。 比較的目につきやすい特徴から愚直に崩していく方針【解1】と、急所を突けば一撃で倒せる方針【解2】という2路線の解答を用意しました。 見えてしまえばなんてことは ...

2021/4/18

空間ベクトルと三角関数【座標における角度の扱い】【2017年度 一橋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   平面座標における角度の扱いと言えば 座標平面上で角度を扱うときの方針 ベクトルの内積を用いて、cos の服を着せて角度を扱う tan の加法定理を用いて、傾きとtan の関係を用いる 複素数平面として考えて、極形式を用いて回転させる というのが一般的です。   ただ、今回のような空間座標となってくると、ベクトルの内積を用いる方針しか使えないでしょう。 あとは幾何的に翻訳するとかも考えられるかもしれませんが、本問において ...

2021/4/18

サインカーブの等分【面積の等分問題】【2013年度 日本女子大学】

今回は登山コースを3コース用意しました。   上級コース 問題はこちら(画像をクリックするとPDFファイルで開きます。)   上級コースは面積の2等分という定番問題のシナリオがきちんと自分のものになっていることを前提に、3等分という拡張版を考える問題です。 難関大受験生からすると、解くこと自体は容易いかもしれません。 それよりも本問を解く過程の中で現れる事実に驚きます。 もし、躓いた場合は、まずは本問のベースとなる2等分問題を確認してみましょう。 その場合中級コースを確認するとよいでし ...

2021/4/18

微分と不等式証明【誘導を活用するための工夫】【2007年度 大阪大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   不等式の証明がテーマとなっていますが、オチの問題で使いそうなものが (1) ,  (2) に散りばめられています。 (1) ,  (2) 自体は完答が狙える問題です。 試験場においては(1) ,  (2) までは確保したいところです。 ただ、緊張した試験場では何が起こるか分かりません。 「試験場補正」がかかってもおかしくはないでしょう。 本問はまさに実践演習といった感じです。 特別な何かがあるわけではありませんが、大切な手法や考 ...

2021/4/18

幾何・座標・ベクトル【別解の宝庫】【2002年度 京都大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 難関大の問題では図形を扱う際、どの分野で解き進めるかという選択を迫られることが多いです。 その分野として多いのが 図形を扱う代表的分野 幾何(三角比や初等幾何) 座標 ベクトル 複素数平面 という4分野です。 そして、見た目通りの分野が最短の解法になるとは限らないところが厄介です。 見た目ベクトルの問題だけど、座標で解いたり、見た目座標の問題なんだけど幾何的に見た方が早かったり \(\cdots\) といった具合です。 本問は非常に多くの戦略 ...

2021/4/18

空間座標における回転体【ズレて刺さった団子の回転体】【2014年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   空間座標における回転体というトピックスで、難関大を目指すにあたっては避けては通れない話題です。 一般に 空間座標における回転体の扱い方 全体像を捨てろ 切ってから回す(先に回すな) 回転の中心からの最大距離・最小距離を捉える がポイントになる点です。 全体像については「仮に分かったとしても、それが体積を求めることに役に立つのか?」ということを考えれば、考えるだけ無駄です。 むしろ混乱するだけなので、考えない方がいいぐらいです。 ...

2021/4/18

減衰曲線【立式からその処理までの一連の流れを確認】【1994年度 東京工業大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   減衰曲線を扱った定番の問題です。 本問に限らず、同様の趣旨の問題は毎年どこかでは出題されます。 多少の亜種はありますが、シナリオは大きく変わりません。 今回は一番シンプルな  \(y=e^{-x}|\sin{x}| \)  というタイプの減衰曲線をもってきました。 これについては「定着するまできちんと勉強してきたか」ということで差が付くでしょう。 特に理系の現役生の方は数Ⅲの完成度がモノを言います。 数Ⅲについてはやるべきことや ...

2021/4/18

同次式(斉次式)の扱いと絶対不等式としての処理【2016年度,1990年度 立命館大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   特徴のある式についてはその個性を活かした扱い方をします。 もちろん、そんな個性のある式はそんなに沢山あるわけではありません。 対称式、交代式、相反式 \(\cdots\) など名前がある式については、個性があるから名前がついています。 今回はその中でも「同次式(斉次式)」というものを扱います。 同次式とは、各項の次数が同じ式のことです。 同次式の例 ①:\(3x^{2}+4xy-y^{2}\) ②:\(4x^{3}+5x^{2} ...

2021/4/18

従属2変数関数の最大最小【2018年度 福島大学】【2016年度 立命館大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)     2変数関数の最大最小問題で、本問のように「それ自身が問題」ということもあれば、「問題を解く中で処理する必要がある」場面もあるでしょう。 そういった意味で、最大最小問題についての基本的な方針は身につけておく必要があります。 今回は従属2変数関数の最大最小問題について見ていきます。 (1) で通用する態度が (2) で通用しないと思いますので、そのあたりをどう乗り越えるかを考えてみましょう。   (以下ネタバ ...

2021/4/18

積の形からの約数拾い【素因数の振り分けの工夫】【2005年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   約数を拾うタイプの問題で、定番の問題に見える一方、解き進めていくと、本問がもつ個性に注目して解き進める必要性も出てくるため、非常にいい問題です。様々な解法も考えられるため、教材として採用したくなりますし、実際様々な問題集などで採り上げられています。 問題自体は「積の形から約数拾い」という方針が目につく形です。 最初の一手である因数分解は恐らくすぐに気が付けると思います。 \(a(a-1)=2^{4}5^{4}M\) という形を得 ...

© 2025 MathClinic