ベクトル

2022/4/7

空間版メネラウスの定理【2015年度 埼玉大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) メネラウスの定理の空間版ともいえる内容の証明を考える問題です。 一応、ベクトルでゴリ押しすることもできますが、そちらについては【復習用問題】の【総括】で扱うことにします。 ここでは平面版のメネラウスの定理の拡張を前面に出した幾何的な路線をメインの路線として考えてみます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 平面版のメネラウスの定理の主張 というように、 \(\triangle{\mathrm{ABC}}\) を、直線 ...

2022/3/26

2022年度 九州大学 理系第1問【折れ線の長さの最小値】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間において折れ線の長さの最小値を考える定番の話題です。 オチ自体が典型的な話題ですし、そのオチに向けた誘導もしっかりついています。 第1問ということもあり、本問をしっかり確保することで勢いに乗りたい標準的な問題です。 MathClinic では においてしっかりと扱っています。 勉強している人ほど、様々な解法が目につくため、逆に目移りしてしまうかもしれません。 翻訳の仕方の違いで多少の計算量は増減しますが、劇的に変化するというほどでもないた ...

2022/3/10

2022年度 北海道大学 理系第2問【平面ベクトルと漸化式】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 与えられたベクトルに関する漸化式により、点列 \(\{\mathrm{P}_{n}\}\) ,  \(\{\mathrm{Q}_{n}\}\) が定まっていきます。 この \(\mathrm{P}_{n}\) の座標を \((x_{n} \ , \ y_{n})\) としたときの \(x_{n}\) や \(y_{n}\) が求められています。 図形的にアプローチする 式をゴリゴリ処理していく という2路線が考えられますが、図形的なイメージで ...

2022/3/6

2022年度 東北大学 理系第5問【空間における直線のベクトル方程式と漸化式】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題文が長く、何を言っているのかを把握するのに集中する必要があります。 まじめな受験生ほど、律儀に絵を描こうとして、この題意の把握に時間をとられてしまう恐れはあります。 正確な図を描こうという心意気は大切ですが、 立式するために必要な見やすい図 が描ければ事足ります。 というように、 \(l\) ,  \(l'\) がそれぞれ \(\vec{a}\) ,  \(\vec{b}\) を方向ベクトルにもつ。 交互に垂線を下ろしあう という状況をし ...

2022/3/1

2022年度 京都大学 理系第4問【四面体の各種考察】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 四面体に関する各種考察問題です。 京大は過去、対称性を意識したような四面体に関する論証を割とよく出題していました。 本問はパッと見ただけでは対称性というのは見えませんが、よくよく観察してみると結構対称性が隠れています。 ただ、本問の場合、機械的にベクトルでゴリゴリ進めていって何の問題もありません。 試験場においても、下手に時間を失うリスクを考えれば確実にベクトルで処理した方がよいと思います。 ベクトルで処理していって処理量が爆発するようだと考 ...

2022/2/16

ベクトルの三角不等式【1997年度 信州大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) ベクトルの三角不等式を題材とした問題です。 (1) ,  (2) までは基本的な内容の確認ですが、最後の (3) は難しいと思います。 ただ、ありふれた材料をもとにコクのある味わいに仕上げた名作です。 活路を見出せると気持ちよさを感じるでしょう。 ただ、限られた時間しかない試験場では撤退せざるを得ない可能性も大いにあります。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む ベクトルの三角不等式 (1) の (イ) で ...

2022/2/12

オイラー線【外心と重心と垂心の位置関係】【1999年度 山梨大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) オイラー線と呼ばれる有名な話題について扱います。 1993年度札幌医科大、2006年度岩手大、2018年度上智大など、出題校をあげていくとキリがありません。 今回は最も標準的な訊き方をしている問題を例題としてもってきました。 本問の流れやストーリー、結果は難関大を目指すにあたり記憶に値します。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む オイラー線について オイラー線 三角形 \(\mathrm{ABC}\) の ...

2021/12/26

点列の極限【雷紋問題】【1998年度 日本女子大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 進行方向に関する決まったアルゴリズムによって定まる点列を扱う問題で、この分野の定番問題の一つです。 イメージとしてラーメンの器にある のようなクルクルした動きのイメージです。 このラーメンの器の模様はどうやら雷紋と呼ばれているようで、勝手に雷紋問題と呼ばせてもらうことにします。 迷路のような形で悪霊が道に迷うとのことで、古くから中国で魔除けの模様として使われていたようです。 本問、及びそれに準ずる話題の問題については今日以降道に迷っていてはい ...

2021/12/9

内積と軌跡【軌跡の範囲】【2002年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 本問の料理名は 軌跡のベクトル風味仕立て~範囲のスパイスとともに~ でございます。 定番の味付けの中に、ピリッとアクセントの効いた味わいをお楽しみください。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について まずは前菜でございます。 点 \(\mathrm{A}\) \((a \ , \ a^{2})\) ,  \(\mathrm{B}\) \((b \ , \ b^{2})\) という設定により、 ...

2021/12/5

円周上の3点による直角三角形【ベクトルの論証】【2001年度 大阪市立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 円周上の3点によって直角三角形ができるための必要十分条件を考える論証問題です。 幾何的に言えば \(\triangle{\mathrm{ABC}} が直角三角形 \Leftrightarrow \mathrm{AB} \ , \ \mathrm{BC} \ , \ \mathrm{CA} のどれかが直径\) という同値性は言えるでしょう。 それをもう少し高級に主張しています。 勉強している人からすれば、今回主張されている同値性は 「そりゃそう ...

© 2025 MathClinic