回転体

2021/4/18

空間座標における回転体【ベビースターラーメンの回転体】【2003年度 東北大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   空間座標における回転体は出題されれば差が付くトピックスです。 難関大を目指すにあたってはしっかりと準備しておきたい話題ですので、しっかりとマスターして周りの受験生に差をつけましょう。 一般に 空間座標における回転体の扱い方 全体像を捨てろ 切ってから回す(先に回すな) 回転の中心からの最大距離・最小距離を捉える がポイントになる点です。 全体像については「仮に分かったとしても、それが体積を求めることに役に立つのか?」ということを ...

2021/4/18

空間座標における回転体【ズレて刺さった団子の回転体】【2014年度 名古屋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   空間座標における回転体というトピックスで、難関大を目指すにあたっては避けては通れない話題です。 一般に 空間座標における回転体の扱い方 全体像を捨てろ 切ってから回す(先に回すな) 回転の中心からの最大距離・最小距離を捉える がポイントになる点です。 全体像については「仮に分かったとしても、それが体積を求めることに役に立つのか?」ということを考えれば、考えるだけ無駄です。 むしろ混乱するだけなので、考えない方がいいぐらいです。 ...

2021/4/17

空間座標における回転体の体積【円錐の回転体の体積とその工夫】【2017年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。)   (1) は難関大志望者であれば、特に手が止まることはないでしょう。 点 \(P\) の軌跡が円となることも容易に把握できると思います。 問題は (2) です。 点 \(Q\) が \(OQ=1\) を満たしながら、平面 \(x=0\) を動くということは, 点 \(Q\) は原点 \(O\) を中心として平面 \(x=0\) で回転しています。 線分 \(OP\) とはいわば円錐の「母線」です。 点 \(Q\)  の回転に伴って ...

© 2025 MathClinic