2項間不等式【2003年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 2項間漸化式ならぬ2項間不等式です。 本問で扱う2項間の関係は「不等式」であり、数列 \(\{a_{n}\}\) を具体的に定めていく規則性のある等式ではありません。 そのあたりの言われれば当然のことをしっかりと意識しているかで偶然解けるか、必然的に解けるかが分かれるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む ホントかよという気持ち もちろん、問題文で言われている主張は本当なのですが、 \(a_{n+1} \gt ...
いずれかが成り立つ不等式【1987年度 早稲田大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) \(A \geq n\) , \(B \geq n\) の少なくともどちらかは成り立つということを証明するという問題です。 方針面で「こうしてみようかな」という構想は出てくると思います。 解き終わってみると、ワンポイントレッスンのような問題に感じるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 第一感は背理法 \(A \geq n\) または \(B \geq n\) が成り立つことを示すにあたり、少なくとも一方が成 ...
チェビシェフの多項式 第7講【ミニマックス原理との関連】【1977年度岐阜大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) チェビシェフの多項式と呼ばれる有名テーマを扱った問題で、大学入試においても様々な角度から切り込まれています。 初見だと厳しい内容もありますので、代表的な問題を今回シリーズものとして扱うことにしました。 今回は第7弾です。 【前回までの内容】 今回はミニマックス原理というものが背景にある問題を扱います。 一連の流れが非常に独特です。 誘導があるならともかく、誘導なしの場合、初見で対応するのはかなり難しいと思います。 ...
数学的帰納法と背理法 第4講【隠れた補題に気が付けるか】【2004年度 名古屋大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数学的帰納法と背理法」シリーズの4弾目です。 このシリーズの一覧はこちら 本問は前回までのシナリオをベースとしながらも、さらに見抜くべきことや示すべきことが多々あります。 「数学的帰納法と背理法3」の記事で、「互いに素であることの翻訳の仕方は色々ある」ということを勉強したと思います。 「2数が互いに素である」ということは「その2数の最大公約数が1」と翻訳することが基本です。 最大公約数を扱うにあたり、大きな武器が ...
数学的帰納法と背理法 第3講【仮定の工夫】【2012年度 和歌山県立医科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数学的帰納法と背理法」シリーズの3弾目です。 このシリーズの一覧はこちら 基本的なシナリオは前回までとおおよそは同じなのですが ココがポイント 互いに素(最大公約数が1)ということをどう翻訳するか が山場となります。 互いに素ということの翻訳の仕方は様々あるということを、本問を通じて学んでほしいと思います。 解答はコチラ
数学的帰納法と背理法 第2講【限られた素因数しかもたないことの証明】【2007年度 東北大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 「数学的帰納法と背理法」シリーズの2弾目です。 このシリーズの一覧はこちら 今回のオチは「共通素因数がこれしかない」ということの証明です。 前回の「互いに素(共通素因数をもたない)」ということと本質的には同じですので、前回の問題ができなかった人はリベンジしてみてください。 解答はコチラ
数学的帰納法と背理法 第1講【互いに素であることの証明】【2002年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) このシリーズの一覧はこちら 数学における2大証明法「数学的帰納法」と「背理法」のコラボレーション問題です。 指導者側からすると「ハイハイこれね」と言いたくなるぐらい手垢のついた問題ですが、初めて解いた時の気持ちよさは今でも覚えています。 漸化式に関する証明問題では帰納法を用いるのが常套手段です。 本問では「互いに素」であることを証明するために背理法を用いることになります。 矛盾の仕方が個人的に気持ちいいですね。 ( ...