実践演習

2022/10/28

ニュートンの補間法【1995年度 甲南大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) ニュートンの補間法と呼ばれるものが背景にある問題を扱います。 問題を解くこと自体はできるかもしれませんが、どこからそんな発想が出てきたのかは中々難しいものがあると思います。 多項式を代入値で表すという独特の考え方であり、過去の数学者たちの知恵のようなものですから勉強していないと天下り的に感じるのも無理はありません。 ひとまずは問題を解くことに集中し、余裕があればこの問題の出どころを見てみましょう。 ニュートンの補間法についての知識そのものが劇 ...

2022/10/22

2乗和と1乗和の解法選択【1993年度 一橋大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 単位円上の4点 \(\mathrm{A}\) ,  \(\mathrm{B}\) ,  \(\mathrm{C}\) ,  \(\mathrm{P}\) について \({\mathrm{PA}}^{2}+{\mathrm{PB}}^{2}+{\mathrm{PC}}^{2}\) \({\mathrm{PA}}+{\mathrm{PB}}+{\mathrm{PC}}\) という2乗和、1乗和について扱う問題です。 2乗和、1乗和によって取りたく ...

2022/10/17

ルーローの三角形【頂点の軌跡】

問題はこちら(画像をクリックするとPDFファイルで開きます。) ルーローの三角形と呼ばれる有名図形を扱った問題です。 出典は1987年度の某全国模試です。 本問のオチは原点にあるルーローの三角形の一頂点の軌跡を捉え、その曲線の長さを求めるという問題です。 頭の中でどのような動きをするのかを追っていく必要があり、動的処理から逃げることはできません。 ロータリーエンジンの原理にも使われていたり、パナソニックのルーロという掃除機もこのルーローの三角形が元となっているなど、実用的にも色々応用されています。 (以下 ...

2022/10/12

3次方程式と整数解【違和感や作為を読み取る】【1970年度 防衛大学校】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 古い問題ですが、3次方程式が整数解をもつという設定はよくある設定であり、今でも十分に演習価値のある問題です。 本問は手なりに進めていくと、「ん?」と思う部分が自然に出てくるはずです。 基本的には違和感やこの問題の作為を見落とさない観察力の問題なのですが、見るべきところを見る経験に裏打ちされる要素も若干は含んでいるでしょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 方程式と解に関する路線 方程式と解に関する問題 ...

2022/9/7

微分積分に関する正誤判定【1988年度 大阪教育大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 微分積分に関する正誤判定の問題です。 「それらしい」主張に惑わされないこと。 勝手なMy Rule をふりかざさないこと。 ということに対する教訓にしてほしい問題です。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について \(f'(x)=g'(x)\) とは \(\{f(x)-g(x)\}'=0\) ということです。 これより \(C\) を定数として \(f(x)-g(x)=C\) ということが言えると思います。 ...

2022/9/2

抽象的な事象の確率と漸化式【1985年度 東京大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 玉を取る、カードを取る、サイコロを投げる、といったいかにも確率の題材となる具体的試行ではなく、ある変数が整数 \(n\) という値をとる確率が \(p_{n}\) という抽象的な設定の問題です。 基本的な処理力だけでなく、その場力も加えた総合的な力が必要な良問です。 試験場ではキッチリと差がつく問題で、確保できればアドバンテージになる難易度だと言えましょう。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 条件の立式 ...

2022/8/28

関数決定の難問【1994年度 埼玉大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(n\) 次関数 \(f(x)\) が導関数 \(f'(x)\) で割り切れるときに \(f(x)\)を求めるというシンプルな問題です。 サラリと訊かれているために、急所がどこにあるのかというのを見逃してしまいかねません。 まずは本問がどの分野の問題であるのかをしっかりと見抜きましょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 条件の立式 \(n\) 次式 \(f(x)\) に対して、その導関数 \(f'(x)\) は ...

2022/8/23

素数が存在する区間【ベルトラン・チェビシェフの定理】【1997年度 京都教育大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 以前、 の記事の中で、素数が存在しない区間(素数砂漠)について触れましたが、本問は素数が存在する区間について考える問題です。 本問も素数の階乗について扱っていますので、併せて見ると繋がりが感じられると思います。 本問は誘導が付いているため、問題を解くこと自体は特に無茶苦茶な要求ではありません。 むしろ、(2) のオチの結果は割とガバガバな結果で、 \(n!\) は \(n\) に比べてかなり大きいから、そりゃそうでしょうね と、感覚的にも納得 ...

2022/10/2

素数の階乗【ウィルソンの定理】【素数砂漠】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 素数の階乗を用いた興味深い性質について見ていきます。 問題のオチは素数が無限に存在するということの証明で、この事実の証明自体は で扱っていますが、アプローチは素数の階乗を用いたものです。 上の記事は素数の積を用いたアプローチですが、本問は \(p!\) を用いたものです。 まぁ、\(p!\) の因数の中には \(p\) 以下の素数が全て入っていますから、基本的に全く別のことをやっているというわけではないでしょう。 (以下ネタバレ注意) &nb ...

2022/8/11

面積比のとり得る値【1997年度 九州大学ほか】

例題はこちら(画像をクリックするとPDFファイルで開きます。) 決して派手な問題ではありませんが、ベクトルに関する基本的な扱いを要求し、最後は面積比の最小問題がオチという実戦的な演習問題です。 角度を共有する三角形の面積比については手際よく立式したいところです。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む (1) について \(\overrightarrow{\mathrm{OG}}\) についてですが、\(k\) 倍する前の \(\overrightarrow{\mathr ...

© 2024 MathClinic