空間版メネラウスの定理【2015年度 埼玉大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) メネラウスの定理の空間版ともいえる内容の証明を考える問題です。 一応、ベクトルでゴリ押しすることもできますが、そちらについては【復習用問題】の【総括】で扱うことにします。 ここでは平面版のメネラウスの定理の拡張を前面に出した幾何的な路線をメインの路線として考えてみます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 平面版のメネラウスの定理の主張 というように、 \(\triangle{\mathrm{ABC}}\) を、直線 ...
ベクトルの三角不等式【1997年度 信州大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) ベクトルの三角不等式を題材とした問題です。 (1) , (2) までは基本的な内容の確認ですが、最後の (3) は難しいと思います。 ただ、ありふれた材料をもとにコクのある味わいに仕上げた名作です。 活路を見出せると気持ちよさを感じるでしょう。 ただ、限られた時間しかない試験場では撤退せざるを得ない可能性も大いにあります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む ベクトルの三角不等式 (1) の (イ) で ...
オイラー線【外心と重心と垂心の位置関係】【1999年度 山梨大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) オイラー線と呼ばれる有名な話題について扱います。 1993年度札幌医科大、2006年度岩手大、2018年度上智大など、出題校をあげていくとキリがありません。 今回は最も標準的な訊き方をしている問題を例題としてもってきました。 本問の流れやストーリー、結果は難関大を目指すにあたり記憶に値します。 (以下ネタバレ注意) + クリック(タップ)して続きを読む オイラー線について オイラー線 三角形 \(\mathrm{ABC}\) の ...
三角形の内角の評価【2012年度 広島大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) シンプルな3辺の長さをもつ三角形の内角がどの程度の大きさなのかを見積もる問題です。 具体的な値が出てこないことに対する恐怖感を拭えない受験生は多く、本問はキッチリと差がつく標準問題でしょう。 それにしても \(\angle \mathrm{A}\) という記号が不等号記号と一緒にされると見づらくてしょうがありません。 以下では単純に頂点 \(\mathrm{A}\) を見込む内角を単に \(A\) などと表すことにします。 (以下ネタバレ注意 ...
三角形と長方形の面積に関する論証【1994年度 名古屋大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 類題2はこちら(画像をクリックするとPDFファイルで開きます。) 内包関係にある三角形と長方形の面積に関する論証問題で、ある意味「そりゃそうだろ」的な主張です。 ただ、こういった論証問題の場合どこまで掘り下げて示せばよいのかが難しいものです。 加えて、配置が自由であるため 「あんたが描いた絵だったらいいかもしれないけど、こういうケースはどうすんの?」 的な突っ込みに耐えられるかど ...
点列の極限【雷紋問題】【1998年度 日本女子大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 進行方向に関する決まったアルゴリズムによって定まる点列を扱う問題で、この分野の定番問題の一つです。 イメージとしてラーメンの器にある のようなクルクルした動きのイメージです。 このラーメンの器の模様はどうやら雷紋と呼ばれているようで、勝手に雷紋問題と呼ばせてもらうことにします。 迷路のような形で悪霊が道に迷うとのことで、古くから中国で魔除けの模様として使われていたようです。 本問、及びそれに準ずる話題の問題については今日以降道に迷っていてはい ...
円周上の3点による直角三角形【ベクトルの論証】【2001年度 大阪市立大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 円周上の3点によって直角三角形ができるための必要十分条件を考える論証問題です。 幾何的に言えば \(\triangle{\mathrm{ABC}} が直角三角形 \Leftrightarrow \mathrm{AB} \ , \ \mathrm{BC} \ , \ \mathrm{CA} のどれかが直径\) という同値性は言えるでしょう。 それをもう少し高級に主張しています。 勉強している人からすれば、今回主張されている同値性は 「そりゃそう ...
四面体の切断と体積【カバリエリの原理】【2018年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 京大が定期的に出題する四面体に関する論証問題です。 幾何・座標・ベクトルという3分野が考えられますが、本問は必要に合わせてどの分野のまな板の上で調理するかを柔軟に対応する力が養えます。 難易度としてはやや難でしょうが、得られるものは大きい問題です。 美しく解く方法もありますが、愚直にやってできないことはありません。 (以下ネタバレ注意) + クリック(タップ)して続きを読む (1) について 色々考えられますが、ベクトルを導入し ...
重心・垂心・外心・内心の位置ベクトル【2016年度 滋賀医科大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) これ1題で 重心・垂心・外心・内心の位置ベクトル の導出について学べるめちゃくちゃコスパの良い問題です。 三角形の代表的な点の位置ベクトルについての基本的な理解を確認するとともに、その特徴を活かして自力で導出できることを本問の目標としたいと思います。 この数字設定は解き進めていくと、 「めんどくさっ」 と思えてきますが、反面 「これ狙って作ったとしたらすげぇな」 というちょっとした驚きも含まれており、この話題をマスターしている人も確認のために ...
円に外接する四角形の面積【図形量の最小】【2015年度 京都大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 円に外接する四角形の面積の最小を考える問題です。 テーマとしては「図形量の最大最小」であり、今回は面積を何かしら数式化し、その関数の最小について捉えることになります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 条件(a)について 最低2つあるという直角の位置関係によって、今回は という2パターン考えられます。 変数の導入 大枠としては 長さ 角度 について変数導入の余地があります。 特に、角度を導入するとなると ...