- HOME >
- Kenichiro Iwata
Kenichiro Iwata
【モットー】:凡人の数学 ☛大学入試の数学は「正しく」勉強すれば報われることを伝えたいと思います。 【生業】:大学受験指導 【経歴】:名古屋大学理学部数理学科卒 【目標】:サイト名に込めました。(現在目標達成に向けて日々邁進)
主に難関大学合格にむけた数学の入試問題の解説をしています。
2022年度北海道大学理系 各解説記事 120分 5題 記述式 と、形式に変更はありません。 分野的トピックス 第1問:2次関数 第2問:ベクトル・数列 第3問:微分法・積分法(数Ⅲ) 第4問:場合の数・確率 第5問:複素数平面 と、幅広い分野から出題されましたが、どちらかというと計算主体の問題に寄っていました。 各大問について 第1問(やや難) 問題はこちら(画像をクリックするとPDFファイルで開きます。) 絶対値付きの2次関数の最小値を考える問題です。 2変数 \(a\) , \(b\) を含む設定で ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 複素数平面における標準的な問題です。 複素数平面からの出題は2018年度以来です。 不気味なぐらい基本的な難易度であり、今年の北大のセットでは落としてはならない問題です。 確保するのは前提としたうえで、どれだけ時間的余裕を捻出できるかという次元の問題だと思います。 円の方程式 垂直二等分線 図形の交点 ド・モアブルの定理 という基本事項がバランスよく入っており、さらに捻った要素もほぼないため、これら基本事項の単純運用で解決してしまいます。 来 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 同じものを含む円順列と確率について考える問題です。 非常に教育的な内容であり、教材として使いたい問題です。 本問のポイントは 確率では全てのものを区別せよ という鉄則にしたがって考える部分です。 なまじ \(\mathrm{O}\) , \(\mathrm{K}\) など、同じ文字を含んでいるがゆえに、身構えて変なことを考えてしまったという受験生もいたかもしれません。 ただ、できれば本問は確保したいレベルの基本的な問題です。 分野的に苦手意 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 不等式で表される領域と、面積に関する問題です。 方向性自体は割と一本道で、迷うことはありませんが、それを処理しきるためには 「見るべき部分を見る」 ということが必要になってきます。 不必要な部分にとらわれすぎてしまい、身動きがとれなくなってしまう恐れは多々あります。 一つ一つの処理で特別なことはしていませんが、「やり方」に終始して根本的な部分を蔑ろにしてきた受験生からすると、 「聞けば分かる」 で終わってしまいます。 本番の入試で「聞けば分か ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 与えられたベクトルに関する漸化式により、点列 \(\{\mathrm{P}_{n}\}\) , \(\{\mathrm{Q}_{n}\}\) が定まっていきます。 この \(\mathrm{P}_{n}\) の座標を \((x_{n} \ , \ y_{n})\) としたときの \(x_{n}\) や \(y_{n}\) が求められています。 図形的にアプローチする 式をゴリゴリ処理していく という2路線が考えられますが、図形的なイメージで ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 絶対値付きの2次関数の最小値を考える問題ですが、2変数 \(a\) , \(b\) を含んでおり、整理力が必要です。 個人的には東大文系の匂いを感じました。(主観) まずは丁寧に場合分けをして絶対値を外す作業をします。 (1) は \(x \lt 0\) , \(x \gt 1\) という範囲が決まっており、条件 \(0 \leq a \leq b \leq 1\) ということを加味すると、この範囲では各絶対値はそのまま外れることになりま ...
2022年度東北大学理系 各解説記事 150分 6題 記述式 と、形式に変更はありません。 分野的トピックス 第1問:場合の数 第2問:微分法(数Ⅱ) 第3問:微分法・極限(数Ⅲ) 第4問:図形と方程式・三角関数・極限 第5問:ベクトル・極限 第6問:積分法(数Ⅲ) という出題で、微積や極限に若干寄ってはいますが、何とか他の分野の問題も入れようという思いがうかがえるセットでした。 各大問について 第1問(やや易) 問題はこちら(画像をクリックするとPDFファイルで開きます。) 整数を自然数や非負整数の和の ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 球と円柱の共通部分の体積というシンプルな題意です。 難関大ではよく出るトピックスで、このあたりをキッチリと準備してきている受験生もいるでしょうが、本問の場合、半径が \(r\) という文字で与えられているため、 切って断面積を求めて積分 という正攻法で行こうと思うと中々大変です。 ひとまず \(x^{2}+y^{2}+z^{2} \leq r^{2}\) \(x^{2}+y^{2}=1\) , \(0 \leq z \leq \sqrt{3 ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) 問題文が長く、何を言っているのかを把握するのに集中する必要があります。 まじめな受験生ほど、律儀に絵を描こうとして、この題意の把握に時間をとられてしまう恐れはあります。 正確な図を描こうという心意気は大切ですが、 立式するために必要な見やすい図 が描ければ事足ります。 というように、 \(l\) , \(l'\) がそれぞれ \(\vec{a}\) , \(\vec{b}\) を方向ベクトルにもつ。 交互に垂線を下ろしあう という状況をし ...
問題はこちら(画像をクリックするとPDFファイルで開きます。) という状況はよくあるシチュエーションで、この構図を扱ったことのある受験生は多いかもしれません。 様々な文字が飛び交う一般的な設定なので、何を何で表すのかということを見失わないようにしっかりと整理していきたいところです。 オチについては、前半の (1) , (2) が確保できれば割とボーナス問題です。 特別な解法を必要とするわけではなく、素直に状況を立式していけば結論まで辿り着けます。 ただ、色々解法が目につき、目移りするかもしれません。 確 ...
© 2024 MathClinic