アステロイドの射影【ベクトル方程式の活用】【1999年度 お茶の水女子大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) アステロイドに光を当てたときにできる影について考える問題です。 立式さえできれば、曲線の長さという基本的な計算になりますので、この影が表す図形をどのように立式するかがポイントになってきます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む イメージ図 ひとまずは問題の図形 \(D\) , \(D'\) のイメージを掴みたいと思います。 図形 \(D\) の境界線が表す曲線を \(C\) , 図形 \(D'\) の境界線が表す曲 ...
周期関数【1999年度 山梨大学ほか】
例題はこちら(画像をクリックするとPDFファイルで開きます。) 類題はこちら(画像をクリックするとPDFファイルで開きます。) 周期関数に関する定義と、それにまつわる基本事項、および周期関数か否かの判断について考える問題です。 例題では誘導も兼ねた基本事項の確認がありますが、類題では周期関数かどうかの判断に焦点が当てられており、基本的にはノーヒントでの判断を要求されます。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 例題について 例題はこちら(再掲)(画像をクリックするとPD ...
空間における2円【1999年度 東京大学】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 空間座標における2つの円を扱う問題です。 空間の図形問題は苦手意識をもつ受験生も多く、差がつきやすいトピックスでしょう。 本問は題意の把握、把握後の立式、立式後の処理と各ステージで山場があり、完答するためには確かな力が必要となります。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 題意の把握 一見、 「ん?どういう状況だ?」 と身構える問題です。 条件 (a) を見た印象としては 「原点中心、半径 \(1\) の球 ...
幾何・座標・ベクトル【解法の選択】
問題はこちら(画像をクリックするとPDFファイルで開きます。) 見た目はベクトルの問題ですが、様々な解法が考えられます。 そのままベクトルで捌くのもいいですし、少し凝った解法で捌いてもよいでしょう。 正攻法に攻めても問題なく捌けるという点は試験場ではありがたいですね。 (以下ネタバレ注意) + クリック(タップ)して続きを読む 路線1:ベクトル 見た目通りベクトルの問題として捌いていくことを考えてみます。 まず、3点 \(\mathrm{A}\) , \(\mathrm{B}\) , \ ...