月別アーカイブ:2022年06月

2022/6/6

2項間不等式【2003年度 京都大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) 2項間漸化式ならぬ2項間不等式です。 本問で扱う2項間の関係は「不等式」であり、数列 \(\{a_{n}\}\) を具体的に定めていく規則性のある等式ではありません。 そのあたりの言われれば当然のことをしっかりと意識しているかで偶然解けるか、必然的に解けるかが分かれるでしょう。 (以下ネタバレ注意) + クリック(タップ)して続きを読む ホントかよという気持ち もちろん、問題文で言われている主張は本当なのですが、 \(a_{n+1} \gt ...

2022/6/5

相反式に関する不等式証明【2000年度 慶應義塾大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) \(x\) と \(\displaystyle \frac{1}{x}\) の対称式を相反式と言い、相反式に関する不等式証明の問題です。 (1) は特に問題はないでしょうが、(2) が解法によって大変さが変わってきます。 そのまま手なりに押し通すこともできますが、その場合は結構腕力が必要です。 試験場であれば傷だらけになるのを覚悟で茨の道を駆け抜けるのも致し方ないでしょう。 問題を読み、題意を把握した段階で疑問を感じたら、工夫の余地が見えてく ...

2022/6/1

無理方程式と論証【両辺2乗と同値性】【1961年度 横浜国立大学】

問題はこちら(画像をクリックするとPDFファイルで開きます。) シンプルに無理方程式を解くという題意ですが、 バシッと完答できる アワワワとなって泡を吹く 実数解には辿り着けたが、論証面で傷を負う の3パターンのどれかにキッチリ分かれるでしょう。 このあたりの論証は普段からどれだけ丁寧に学習を積み重ねてきたかが問われます。 (以下ネタバレ注意)   + クリック(タップ)して続きを読む 基本方針 一見どこから手を付けたらよいのか立ち往生しかねませんが、基本方針としては根号を外す 「2乗操作」 を ...

© 2025 MathClinic