定数 c $(c \Rightarrow 0)$ に対して,等式 f(x+c)=f(x) がすべての x について成り立つとき,関数 f(x) は周期関数であるといい,またこの等式を満たすような正の数 c のうちの最小値を f(x) の周期という。

次の関数は周期関数であるか否かを、理由をつけて答えよ。また、周期関数である場合には、その周期を求めよ。

- (1) $f(x) = \sin(\sin x)$
- (2) $f(x) = \cos(\sin x)$
- (3) $f(x) = \sin(x^3)$
- (4) $f(x) = 2^{\sin x}$

< '84 京都大 >

【戦略】

(1) 周期 2π の周期関数であることは直感的に見つけられるかもしれませんが、それが最小であることをどのように言うかが問題です。

f(x+c)=f(x) が成り立つとき , $\sin(\sin(x+c))=\sin(\sin x)$ です。

中身である
$$\sin(x+c)$$
 , $\sin x$ は共に
$$\begin{cases} |\sin(x+c)| \le 1 < \frac{\pi}{2} \\ |\sin x| \le 1 < \frac{\pi}{2} \end{cases}$$
 を満たし

ますから、中身比べができて、 $\sin(x+c) = \sin x$ と言えます。

これを満たす c は $c=2n\pi\,(n$: 整数) であり , c の正の最小値は $c=2\pi$ ということになります。

(2) 今度は周期 π であることが分かるでしょう。

これも最小であることをどのように言うかが問題であり, f(x+c)=f(x) を紐解いて行く必要があります。

今回は $\cos(\sin(x+c)) = \cos(\sin x)$ ですが、単純に中身比べができません。

そこで,全称命題と捉えて,x=0 でも成り立つよねという必要条件を考えていきます。

これにより, $\cos(\sin c)=1$ であり, $\sin c=2m\pi$ という関係式を得るわけですが, $-1\leq\sin c\leq1$ ですから, $-1\leq2m\pi\leq1$ ということになり,これを満たす整数 m は m=0 となるしかありません。

よって, $\sin c=0$ となり, $c=n\pi$ を得て,これを満たす最小の正の c は $c=\pi$ ということになるわけです。

(3) 例題で学んだように、今度は周期関数ではありません。

背理法によって,矛盾を狙っていきますが,狙い筋としては例題同様 両辺微分することです。

$$\sin(x+c)^3 = \sin(x^3)$$
 の両辺を微分することで $\cos(x+c)^3 \cdot 3(x+c)^2 = \cos(x^3) \cdot 3x^2$

という関係式を得ます。

例題は $0 \le x \le p$ で有限確定すれば、全実数の範囲で有限確定するという誘導がついていましたが、ここではその誘導がないため、

(2) 同様全称命題と捉えて,x=0 でも成り立つよねという必要条件を考えていきます。

これにより, $\sin(c^3)=0$, $\cos(c^3)=0$ を得るわけですが, $\sin(c^3)$, $\cos(c^3)$ が同時に 0 とはならないため,矛盾します。もちろん根拠は $\sin^2(c^3)+\cos^2(c^3)=1$ です。

(4) 周期 2π であることが分かりますから,(1),(2) 同様 f(x+c)=f(x) について紐解いていきます。

 $2^{\sin(x+c)}=2^{\sin x}$ で、指数関数であれば、指数比べができますから $\sin(x+c)=\sin x$ と即座に得られ、 $c=2n\pi$ を得ます。

この中で正の最小の c は $c=2\pi$ と得られ,解決します。

【解答】

$$\begin{array}{ll} (1) & f(x+2\pi) = \sin(\sin(x+2\pi)) \\ & = \sin(\sin x) \\ & = f(x) \end{array}$$

また,
$$f(x+c)=f(x)$$
 が任意の x に対して成立するとき, $\sin(\sin(x+c))=\sin(\sin x)$ …①

一般に $| heta|<rac{\pi}{2}$ の範囲において $\sin heta$ は単調増加であるため,

 $|lpha|<rac{\pi}{2}$, $|eta|<rac{\pi}{2}$ を満たす lpha, eta に対して $\sinlpha=\sineta$ が成り立つ とき, lpha=eta である。

今, $|\sin(x+c)| \le 1 < \frac{\pi}{2}$, $|\sin x| \le 1 < \frac{\pi}{2}$ であることから

① が成り立つとき, $\sin(x+c)=\sin x$ であり,これが任意のx で成り立つような最小の正の数c は $c=2\pi$

ゆえに, $f(x) = \sin(\sin x)$ は周期 2π の周期関数である。

(2)
$$f(x+\pi) = \cos(\sin(x+\pi))$$
$$= \cos(-\sin x)$$
$$= \cos(\sin x)$$
$$= f(x)$$

また,
$$f(x+c)=f(x)$$
 が任意の x に対して成立するとき, $\cos(\sin(x+c))=\cos(\sin x)$

特にx=0でも成立するので, $\cos(\sin c)=1$

ゆえに, $\sin c = 2m\pi$ となる。

 $|\sin c| \le 1$ であるため, $|2m\pi| \le 1$ が成り立つ。

これを満たす整数mはm=0

したがって, $\sin c = 0$ となり, $c = n\pi$ (n は整数)となる。

これを満たす最小の正の数 c は $c=\pi$

以上から, $f(x) = \cos(\sin x)$ は周期 π の周期関数である。

(3) $f(x) = \sin(x^3)$ が周期関数であると仮定する。

このとき,任意のxに対して, $\sin(x+c)^3 = \sin(x^3)$ … (*) となる c (\Rightarrow 0) が存在する。

(*) は特に x=0 でも成立するので, $\sin(c^3)=0$ …②

また,(*)の両辺xで微分すると $\cos(x+c)^3\cdot 3(x+c)^2 = \cos(x^3)\cdot 3x^2 \cdots (**)$

(**) は特にx=0 でも成立するので, $\cos(c^3) \cdot 3c^2 = 0$

 $c \neq 0$ であるため, $\cos(c^3) = 0$ …③

② , ③ の結果は $\sin^2(c^3) + \cos^2(c^3) = 1$ の結果に矛盾する。

以上から, $f(x) = \sin(x^3)$ は周期関数ではない。

(4)
$$f(x+2\pi) = 2^{\sin(x+2\pi)}$$

= $2^{\sin x}$
= $f(x)$

また , f(x+c) = f(x) が任意の x に対して成立するとき $2^{\sin{(x+c)}} = 2^{\sin{x}}$

一般に $y=2^x$ は x についての単調増加関数であるため, $\sin(x+c)=\sin x$ であり,これが任意の x で成り立つような最小の正の数 c は $c=2\pi$

以上から, $f(x)=2^{\sin x}$ は周期 2π の周期関数である。

【総括】

誘導がないため、素の力が出来不出来に直結するでしょう。

特に(3)は例題をやった直後であれば捌けるでしょうが、緊張した試験場で 突然ポンと出題されたときにスムーズに手が動くかどうかを想定してみて ください。

例題のように

 $f(x) = \sin(x^3)$ に対して, f(x)が周期関数と仮定する。

このとき,f(x+c)=f(x) となるc (\Rightarrow 0)が存在し,両辺xで 微分すると,f'(x+c)=f(x)であるため, $f'(x)=3x^2\cos(x^3)$ も 周期関数である。

また、周期関数 f'(x) は $0 \le x \le c$ で $|f'(x)| \le M$ (M は有限確定値) であるため、全ての x に対して $|f'(x)| \le M$ … (x)

しかし, $a_n = \sqrt[3]{2n\pi}$ で与えられる数列 $\{a_n\}$ に対して

$$f'(a_n) = 3(2n\pi)^{\frac{2}{3}}\cos(2n\pi)$$
$$= 3(2n\pi)^{\frac{2}{3}}$$

(☆) より, $\lim_{n\to\infty}|f'(a_n)|\leq M$ であるが, $\lim_{n\to\infty}|f'(a_n)|=\infty$ であり 矛盾する。

という流れでもよいでしょうが、ノーヒントでは中々厳しいものがあるでしょう。

.....